
A symbiosis of constraint optimization, symmetries and
symmetry breaking for scalable Cloud deployment problems

Mădălina Eraşcu

West University of Timişoara, Romania

madalina.erascu@e-uvt.ro

Joint work with Bogdan David, Flavia Micota and Daniela Zaharie

The Tenth Congress of Romanian Mathematicians,
June 30 - July 5, 2023, Piteşti, Romania

1.1/ 33

This work was patially supported by grants of the Romanian National Authority for
Scientific Research and Innovation, CNCS/CCCDI - UEFISCDI: projects number
PN-III-P2-2.1-PED-2016-0550 and PN-III-P1-1.1-TE-2021-0676 within PNCDI III.

Outline

Motivation

Problem Specification and Solution

Zooming-in: The Problem of Selection and Distribution/assignment
Example: Wordpress Application
Problem Formalization
Solution Approaches
Experimental Analysis I

Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results II

Conclusions and Discussion

2.1/ 33

Contents

Motivation

Problem Specification and Solution

Zooming-in: The Problem of Selection and Distribution/assignment
Example: Wordpress Application
Problem Formalization
Solution Approaches
Experimental Analysis I

Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results II

Conclusions and Discussion

3.1/ 33

Motivation

Advent of Cloud computing ⇝

loosely-coupled architecture ⇝ DevOps
paradigm ⇝ application modeling ⇝ optimal deployment

Benefits of optimal deployment:

1. the synthesis of deployment plans that are optimal by design

2. the integration of such deployment plans into the application modeling
process, enables formal reasoning on a model of the deployed application.

4.1/ 33

Motivation

Advent of Cloud computing ⇝ loosely-coupled architecture

⇝ DevOps
paradigm ⇝ application modeling ⇝ optimal deployment

Benefits of optimal deployment:

1. the synthesis of deployment plans that are optimal by design

2. the integration of such deployment plans into the application modeling
process, enables formal reasoning on a model of the deployed application.

4.2/ 33

Motivation

Advent of Cloud computing ⇝ loosely-coupled architecture ⇝ DevOps
paradigm

⇝ application modeling ⇝ optimal deployment

Benefits of optimal deployment:

1. the synthesis of deployment plans that are optimal by design

2. the integration of such deployment plans into the application modeling
process, enables formal reasoning on a model of the deployed application.

4.3/ 33

Motivation

Advent of Cloud computing ⇝ loosely-coupled architecture ⇝ DevOps
paradigm ⇝ application modeling

⇝ optimal deployment

Benefits of optimal deployment:

1. the synthesis of deployment plans that are optimal by design

2. the integration of such deployment plans into the application modeling
process, enables formal reasoning on a model of the deployed application.

4.4/ 33

Motivation

Advent of Cloud computing ⇝ loosely-coupled architecture ⇝ DevOps
paradigm ⇝ application modeling ⇝ optimal deployment

Benefits of optimal deployment:

1. the synthesis of deployment plans that are optimal by design

2. the integration of such deployment plans into the application modeling
process, enables formal reasoning on a model of the deployed application.

4.5/ 33

Motivation

Advent of Cloud computing ⇝ loosely-coupled architecture ⇝ DevOps
paradigm ⇝ application modeling ⇝ optimal deployment

Benefits of optimal deployment:

1. the synthesis of deployment plans that are optimal by design

2. the integration of such deployment plans into the application modeling
process, enables formal reasoning on a model of the deployed application.

4.6/ 33

Motivation

Advent of Cloud computing ⇝ loosely-coupled architecture ⇝ DevOps
paradigm ⇝ application modeling ⇝ optimal deployment

Benefits of optimal deployment:

1. the synthesis of deployment plans that are optimal by design

2. the integration of such deployment plans into the application modeling
process, enables formal reasoning on a model of the deployed application.

4.7/ 33

Motivation

Advent of Cloud computing ⇝ loosely-coupled architecture ⇝ DevOps
paradigm ⇝ application modeling ⇝ optimal deployment

Benefits of optimal deployment:

1. the synthesis of deployment plans that are optimal by design

2. the integration of such deployment plans into the application modeling
process, enables formal reasoning on a model of the deployed application.

4.8/ 33

Contents

Motivation

Problem Specification and Solution

Zooming-in: The Problem of Selection and Distribution/assignment
Example: Wordpress Application
Problem Formalization
Solution Approaches
Experimental Analysis I

Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results II

Conclusions and Discussion

5.1/ 33

Problem Specification

Automated deployment of component-based applications in the Cloud
consists of:

1. selection of the computing resources,

2. distribution/assignment of the application components over the available
computing resources,

3. its dynamic modification to cope with peaks of user requests.

SAGE

SAGE

Predeployer

SAGEOpt Translator

Optimal

Solution

App

Description

Cloud

Offers

SAGE

manifest

files

Boreas

manifest

files

K8s

manifest

files
K8s Cluster

Figure: SAGE General Architecture

6.1/ 33

Problem Specification

Automated deployment of component-based applications in the Cloud
consists of:

1. selection of the computing resources,

2. distribution/assignment of the application components over the available
computing resources,

3. its dynamic modification to cope with peaks of user requests.

SAGE

SAGE

Predeployer

SAGEOpt Translator

Optimal

Solution

App

Description

Cloud

Offers

SAGE

manifest

files

Boreas

manifest

files

K8s

manifest

files
K8s Cluster

Figure: SAGE General Architecture

6.2/ 33

Problem Specification

Automated deployment of component-based applications in the Cloud
consists of:

1. selection of the computing resources,

2. distribution/assignment of the application components over the available
computing resources,

3. its dynamic modification to cope with peaks of user requests.

SAGE

SAGE

Predeployer

SAGEOpt Translator

Optimal

Solution

App

Description

Cloud

Offers

SAGE

manifest

files

Boreas

manifest

files

K8s

manifest

files
K8s Cluster

Figure: SAGE General Architecture

6.3/ 33

Problem Specification

Automated deployment of component-based applications in the Cloud
consists of:

1. selection of the computing resources,

2. distribution/assignment of the application components over the available
computing resources,

3. its dynamic modification to cope with peaks of user requests.

SAGE

SAGE

Predeployer

SAGEOpt Translator

Optimal

Solution

App

Description

Cloud

Offers

SAGE

manifest

files

Boreas

manifest

files

K8s

manifest

files
K8s Cluster

Figure: SAGE General Architecture

6.4/ 33

Problem Specification

Automated deployment of component-based applications in the Cloud
consists of:

1. selection of the computing resources,

2. distribution/assignment of the application components over the available
computing resources,

3. its dynamic modification to cope with peaks of user requests.

SAGE

SAGE

Predeployer

SAGEOpt Translator

Optimal

Solution

App

Description

Cloud

Offers

SAGE

manifest

files

Boreas

manifest

files

K8s

manifest

files
K8s Cluster

Figure: SAGE General Architecture

6.5/ 33

Contents

Motivation

Problem Specification and Solution

Zooming-in: The Problem of Selection and Distribution/assignment
Example: Wordpress Application
Problem Formalization
Solution Approaches
Experimental Analysis I

Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results II

Conclusions and Discussion

7.1/ 33

Contents

Motivation

Problem Specification and Solution

Zooming-in: The Problem of Selection and Distribution/assignment
Example: Wordpress Application
Problem Formalization
Solution Approaches
Experimental Analysis I

Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results II

Conclusions and Discussion

8.1/ 33

Case Study: Wordpress: Formalization

Wordpress (www.wordpress.com) is an open-source application frequently used
in creating websites, blogs and web applications.

▶ DNSLoadBalancer requires at least
1 instance of Wordpress and can
serve at most 7 such instances
(Require-Provide constraint)

∑M
k=1 a3k ≤ 7

∑M
k=1 a1k , k = 1,M

▶ Only one type of balancer must be
deployed (Exclusive deployment
constraint).

a3k + a4k ≤ 1, k = 1,M

▶ Components are characterized in
terms of their resource demand
(i.e. in terms of CPU cores, RAM
and storage capacity).

▶ ...

9.1/ 33

Case Study: Wordpress: Formalization

Wordpress (www.wordpress.com) is an open-source application frequently used
in creating websites, blogs and web applications.

▶ DNSLoadBalancer requires at least
1 instance of Wordpress and can
serve at most 7 such instances
(Require-Provide constraint)

∑M
k=1 a3k ≤ 7

∑M
k=1 a1k , k = 1,M

▶ Only one type of balancer must be
deployed (Exclusive deployment
constraint).

a3k + a4k ≤ 1, k = 1,M

▶ Components are characterized in
terms of their resource demand
(i.e. in terms of CPU cores, RAM
and storage capacity).

▶ ...

9.2/ 33

Case Study: Wordpress: Formalization

Wordpress (www.wordpress.com) is an open-source application frequently used
in creating websites, blogs and web applications.

▶ DNSLoadBalancer requires at least
1 instance of Wordpress and can
serve at most 7 such instances
(Require-Provide constraint)

∑M
k=1 a3k ≤ 7

∑M
k=1 a1k , k = 1,M

▶ Only one type of balancer must be
deployed (Exclusive deployment
constraint).

a3k + a4k ≤ 1, k = 1,M

▶ Components are characterized in
terms of their resource demand
(i.e. in terms of CPU cores, RAM
and storage capacity).

▶ ...

9.3/ 33

Case Study: Wordpress: Formalization

Wordpress (www.wordpress.com) is an open-source application frequently used
in creating websites, blogs and web applications.

▶ DNSLoadBalancer requires at least
1 instance of Wordpress and can
serve at most 7 such instances
(Require-Provide constraint)

∑M
k=1 a3k ≤ 7

∑M
k=1 a1k , k = 1,M

▶ Only one type of balancer must be
deployed (Exclusive deployment
constraint).

a3k + a4k ≤ 1, k = 1,M

▶ Components are characterized in
terms of their resource demand
(i.e. in terms of CPU cores, RAM
and storage capacity).

▶ ...

9.4/ 33

Case Study: Wordpress: Formalization

Wordpress (www.wordpress.com) is an open-source application frequently used
in creating websites, blogs and web applications.

▶ DNSLoadBalancer requires at least
1 instance of Wordpress and can
serve at most 7 such instances
(Require-Provide constraint)

∑M
k=1 a3k ≤ 7

∑M
k=1 a1k , k = 1,M

▶ Only one type of balancer must be
deployed (Exclusive deployment
constraint).

a3k + a4k ≤ 1, k = 1,M

▶ Components are characterized in
terms of their resource demand
(i.e. in terms of CPU cores, RAM
and storage capacity).

▶ ...

9.5/ 33

Case Study: Wordpress: Formalization

Wordpress (www.wordpress.com) is an open-source application frequently used
in creating websites, blogs and web applications.

▶ DNSLoadBalancer requires at least
1 instance of Wordpress and can
serve at most 7 such instances
(Require-Provide constraint)

∑M
k=1 a3k ≤ 7

∑M
k=1 a1k , k = 1,M

▶ Only one type of balancer must be
deployed (Exclusive deployment
constraint).

a3k + a4k ≤ 1, k = 1,M

▶ Components are characterized in
terms of their resource demand
(i.e. in terms of CPU cores, RAM
and storage capacity).

▶ ...

9.6/ 33

Case Study: Wordpress: Formalization

Wordpress (www.wordpress.com) is an open-source application frequently used
in creating websites, blogs and web applications.

▶ DNSLoadBalancer requires at least
1 instance of Wordpress and can
serve at most 7 such instances
(Require-Provide constraint)∑M

k=1 a3k ≤ 7
∑M

k=1 a1k , k = 1,M

▶ Only one type of balancer must be
deployed (Exclusive deployment
constraint).

a3k + a4k ≤ 1, k = 1,M

▶ Components are characterized in
terms of their resource demand
(i.e. in terms of CPU cores, RAM
and storage capacity).

▶ ...

9.7/ 33

Case Study: Wordpress: Formalization

Wordpress (www.wordpress.com) is an open-source application frequently used
in creating websites, blogs and web applications.

▶ DNSLoadBalancer requires at least
1 instance of Wordpress and can
serve at most 7 such instances
(Require-Provide constraint)∑M

k=1 a3k ≤ 7
∑M

k=1 a1k , k = 1,M

▶ Only one type of balancer must be
deployed (Exclusive deployment
constraint).

a3k + a4k ≤ 1, k = 1,M

▶ Components are characterized in
terms of their resource demand
(i.e. in terms of CPU cores, RAM
and storage capacity).

▶ ...

9.8/ 33

Cloud provider offers

Remark: [snapshot from https://aws.amazon.com/ec2/] tens of thousands of
price offers corresponding to different configurations and zones

10.1/ 33

Wordpress: Example Solution

▶ VM1 (CPU:4, RAM: 30.5 GB, Storage: 1000 GB, Price: 0.0379 $/hour):
Wordpress+MySQL

▶ VM2 (CPU:4, RAM: 30.5 GB, Storage: 1000 GB, Price: 0.0379 $/hour):
Wordpress+MySQL

▶ VM3 (CPU:4, RAM: 7.5 GB, Storage: 2000 GB, Price: 0.021 $/hour):
Varnish

▶ VM4 (CPU:4, RAM: 7.5 GB, Storage: 2000 GB, Price: 0.021 $/hour):
Varnish

▶ VM5 (CPU:4, RAM: 7.5 GB, Storage: 2000 GB, Price: 0.021 $/hour):
HTTPLoadBalancer

▶ VM6 (CPU:4, RAM: 7.5 GB, Storage: 2000 GB, Price: 0.021 $/hour):
Wordpress

11.1/ 33

Contents

Motivation

Problem Specification and Solution

Zooming-in: The Problem of Selection and Distribution/assignment
Example: Wordpress Application
Problem Formalization
Solution Approaches
Experimental Analysis I

Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results II

Conclusions and Discussion

12.1/ 33

Problem Formalization

General constraints

Basic allocation
M∑
k=1

aik ≥ 1 ∀i = 1,N

Occupancy
N∑
i=1

aik ≥ 1 ⇒ vk = 1 ∀k = 1,M

Capacity
N∑
i=1

aik · Rh
i ≤ F h

tk ∀k = 1,M, ∀h = 1,H

Link vk=1 ∧ tk=o ⇒
H∧

h=1

(
rhk=F

h
tk

)
∧ pk=Ptk ∀o = 1,O, O ∈ N∗∑N

i=1 aik = 0 ⇒ tk = 0 ∀k = 1,M

where:

▶ Rh
i ∈ N∗ is the hardware requirement of type h of the component i ;

▶ F h
tk ∈ N∗ is the hardware characteristic h of the VM of type tk .

13.1/ 33

Problem Formalization (cont’d)

Application-specific constraints

Conflicts aik + ajk ≤ 1 ∀k = 1,M, ∀(i , j) Rij = 1

Co-location aik = ajk ∀k = 1,M, ∀(i , j) Dij = 1
Exclusive deployment

H
(

M∑
k=1

ai1k

)
+ ...+H

(
M∑
k=1

aiqk

)
= 1 for fixed q ∈ {1, ...,N}

H(u) =

{
1 u > 0

0 u = 0

Require- Provide

nij
M∑
k=1

aik ≤ mij

M∑
k=1

ajk ∀(i , j)Qij(nij ,mij) = 1

0 ≤ n
M∑
k=1

ajk −
M∑
k=1

aik < n n, nij ,mij ∈ N∗

where:
▶ Rij = 1 if components i and j are in conflict (can not be placed in the

same VM);
▶ Dij = 1 if components i and j must be co-located (must be placed in the

same VM);
▶ Qij(n,m)=1 if Ci requires at least n instances of Cj and Cj can serve at

most m instances of Ci

14.1/ 33

Problem Formalization (cont’d)

Application-specific constraints

Full deployment
M∑
k=1

(
aik +H

(∑
j,Rij=1

ajk

))
=

M∑
k=1

vk

Deployment with bounded number of instances∑
i∈C

M∑
k=1

aik⟨op⟩n |C | ≤ N, ⟨op⟩∈{=,≤,≥}, n∈N

Find:

▶ assignment matrix a with binary entries aik ∈ {0, 1} for i = 1,N,
k = 1,M, which are interpreted as follows:

aik =

{
1 if Ci is assigned to Vk

0 if Ci is not assigned to Vk .

▶ the type selection vector t with integer entries tk for k = 1,M,
representing the type (from a predefined set) of each VM leased.

Such that: the leasing price is minimal
M∑
k=1

vk · pk

15.1/ 33

Characteristics of the problem

▶ Constrained optimization

▶ Linear programming: 0-1 + real/integer

▶ Related to bin packing but ...

▶ ... the placement of items in bins is limited by constraints

▶ ... the capacity of bins is not fixed (it depends on the offers)

▶ ... the number of items is not known (it depends on the constraints on the
number of instances)

▶ ... the smallest price is not necessarily obtained by using the smallest
number of bins

▶ NP-hard

16.1/ 33

Characteristics of the problem

▶ Constrained optimization

▶ Linear programming: 0-1 + real/integer

▶ Related to bin packing but ...

▶ ... the placement of items in bins is limited by constraints

▶ ... the capacity of bins is not fixed (it depends on the offers)

▶ ... the number of items is not known (it depends on the constraints on the
number of instances)

▶ ... the smallest price is not necessarily obtained by using the smallest
number of bins

▶ NP-hard

16.2/ 33

Characteristics of the problem

▶ Constrained optimization

▶ Linear programming: 0-1 + real/integer

▶ Related to bin packing but ...

▶ ... the placement of items in bins is limited by constraints

▶ ... the capacity of bins is not fixed (it depends on the offers)

▶ ... the number of items is not known (it depends on the constraints on the
number of instances)

▶ ... the smallest price is not necessarily obtained by using the smallest
number of bins

▶ NP-hard

16.3/ 33

Characteristics of the problem

▶ Constrained optimization

▶ Linear programming: 0-1 + real/integer

▶ Related to bin packing but ...

▶ ... the placement of items in bins is limited by constraints

▶ ... the capacity of bins is not fixed (it depends on the offers)

▶ ... the number of items is not known (it depends on the constraints on the
number of instances)

▶ ... the smallest price is not necessarily obtained by using the smallest
number of bins

▶ NP-hard

16.4/ 33

Characteristics of the problem

▶ Constrained optimization

▶ Linear programming: 0-1 + real/integer

▶ Related to bin packing but ...

▶ ... the placement of items in bins is limited by constraints

▶ ... the capacity of bins is not fixed (it depends on the offers)

▶ ... the number of items is not known (it depends on the constraints on the
number of instances)

▶ ... the smallest price is not necessarily obtained by using the smallest
number of bins

▶ NP-hard

16.5/ 33

Characteristics of the problem

▶ Constrained optimization

▶ Linear programming: 0-1 + real/integer

▶ Related to bin packing but ...

▶ ... the placement of items in bins is limited by constraints

▶ ... the capacity of bins is not fixed (it depends on the offers)

▶ ... the number of items is not known (it depends on the constraints on the
number of instances)

▶ ... the smallest price is not necessarily obtained by using the smallest
number of bins

▶ NP-hard

16.6/ 33

Characteristics of the problem

▶ Constrained optimization

▶ Linear programming: 0-1 + real/integer

▶ Related to bin packing but ...

▶ ... the placement of items in bins is limited by constraints

▶ ... the capacity of bins is not fixed (it depends on the offers)

▶ ... the number of items is not known (it depends on the constraints on the
number of instances)

▶ ... the smallest price is not necessarily obtained by using the smallest
number of bins

▶ NP-hard

16.7/ 33

Characteristics of the problem

▶ Constrained optimization

▶ Linear programming: 0-1 + real/integer

▶ Related to bin packing but ...

▶ ... the placement of items in bins is limited by constraints

▶ ... the capacity of bins is not fixed (it depends on the offers)

▶ ... the number of items is not known (it depends on the constraints on the
number of instances)

▶ ... the smallest price is not necessarily obtained by using the smallest
number of bins

▶ NP-hard

16.8/ 33

Contents

Motivation

Problem Specification and Solution

Zooming-in: The Problem of Selection and Distribution/assignment
Example: Wordpress Application
Problem Formalization
Solution Approaches
Experimental Analysis I

Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results II

Conclusions and Discussion

17.1/ 33

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

18.1/ 33

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

18.2/ 33

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

18.3/ 33

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

18.4/ 33

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

18.5/ 33

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution

▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

18.6/ 33

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

18.7/ 33

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods
▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

18.8/ 33

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods
▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator

▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

18.9/ 33

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods
▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution

▶ Drawback: low success rate in case of larger instances

18.10/ 33

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods
▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

18.11/ 33

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

In this presentation: Speeding-up exact methods by symmetry breaking

19.1/ 33

Case Study: Wordpress (cont’d)

Solution:

▶ assignment matrix with elements aij ∈ {0, 1}

aik =

{
1 if component Ci is assigned to machineVk

0 if component Ci is not assigned to machineVk .

▶ type selection vector t with elements tk ∈ N (k = 1,M) representing the
type (from a predefined set) of each VM leased.

both fulfilling the application constraints and minimizing the leasing price.

For the case when the number of Wordpress instances is 3, we have:

▶ the assignment matrix

V1 V2 V3 V4 V5 V6

Wordpress(C1) 1 1 0 0 0 1
MySql(C2) 1 1 0 0 0 0

DNSLoadBalancer(C3) 0 0 0 0 0 0
HTTPLoadBalancer(C4) 0 0 0 0 1 0

Varnish(C5) 0 0 1 1 0 0

▶ the type vector: t = [186, 186, 182, 182, 182, 182].

20.1/ 33

Case Study: Wordpress (cont’d)

Solution:

▶ assignment matrix with elements aij ∈ {0, 1}

aik =

{
1 if component Ci is assigned to machineVk

0 if component Ci is not assigned to machineVk .

▶ type selection vector t with elements tk ∈ N (k = 1,M) representing the
type (from a predefined set) of each VM leased.

both fulfilling the application constraints and minimizing the leasing price.

For the case when the number of Wordpress instances is 3, we have:

▶ the assignment matrix

V1 V2 V3 V4 V5 V6

Wordpress(C1) 1 1 0 0 0 1
MySql(C2) 1 1 0 0 0 0

DNSLoadBalancer(C3) 0 0 0 0 0 0
HTTPLoadBalancer(C4) 0 0 0 0 1 0

Varnish(C5) 0 0 1 1 0 0

▶ the type vector: t = [186, 186, 182, 182, 182, 182].

20.2/ 33

Contents

Motivation

Problem Specification and Solution

Zooming-in: The Problem of Selection and Distribution/assignment
Example: Wordpress Application
Problem Formalization
Solution Approaches
Experimental Analysis I

Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results II

Conclusions and Discussion

21.1/ 33

Experimental Analysis I

Goals:

▶ study the scalability of state-of-the-art general CP, MP and SMT tools in
solving COPs corresponding to the deployment of component-based
applications in the Cloud

▶ effectiveness of various static symmetry breaking techniques in improving
the computational time of solving these problems.

▶ the evaluation from two perspectives: number of VMs offers, respectively
number of deployed instances of components.

#ins #ofr=20 #ofr=40 #ofr=250 #ofr=500

Chuffed

3 2.13 4.18 57.72 458.21
4 26.03 114.18 1974.16 -
5 638.26 2230.39 - -

OR-Tools

3 3.52 8.42 96.38 191.38
4 23.25 56.47 502.71 988.33
5 149.47 428.98 - -
6 494.46 1174.36 - -

IBM CPLEX

3 9.81 - - -
4 124.68 - - -
5 452.32 - - -
6 737.89 - - -

Z3

3 2.92 4.13 115.36 391.87
4 46.46 366.24 - -

22.1/ 33

Experimental Analysis I

Goals:

▶ study the scalability of state-of-the-art general CP, MP and SMT tools in
solving COPs corresponding to the deployment of component-based
applications in the Cloud

▶ effectiveness of various static symmetry breaking techniques in improving
the computational time of solving these problems.

▶ the evaluation from two perspectives: number of VMs offers, respectively
number of deployed instances of components.

#ins #ofr=20 #ofr=40 #ofr=250 #ofr=500

Chuffed

3 2.13 4.18 57.72 458.21
4 26.03 114.18 1974.16 -
5 638.26 2230.39 - -

OR-Tools

3 3.52 8.42 96.38 191.38
4 23.25 56.47 502.71 988.33
5 149.47 428.98 - -
6 494.46 1174.36 - -

IBM CPLEX

3 9.81 - - -
4 124.68 - - -
5 452.32 - - -
6 737.89 - - -

Z3

3 2.92 4.13 115.36 391.87
4 46.46 366.24 - -

22.2/ 33

Experimental Analysis I

Goals:

▶ study the scalability of state-of-the-art general CP, MP and SMT tools in
solving COPs corresponding to the deployment of component-based
applications in the Cloud

▶ effectiveness of various static symmetry breaking techniques in improving
the computational time of solving these problems.

▶ the evaluation from two perspectives: number of VMs offers, respectively
number of deployed instances of components.

#ins #ofr=20 #ofr=40 #ofr=250 #ofr=500

Chuffed

3 2.13 4.18 57.72 458.21
4 26.03 114.18 1974.16 -
5 638.26 2230.39 - -

OR-Tools

3 3.52 8.42 96.38 191.38
4 23.25 56.47 502.71 988.33
5 149.47 428.98 - -
6 494.46 1174.36 - -

IBM CPLEX

3 9.81 - - -
4 124.68 - - -
5 452.32 - - -
6 737.89 - - -

Z3

3 2.92 4.13 115.36 391.87
4 46.46 366.24 - -

22.3/ 33

Experimental Analysis I

Goals:

▶ study the scalability of state-of-the-art general CP, MP and SMT tools in
solving COPs corresponding to the deployment of component-based
applications in the Cloud

▶ effectiveness of various static symmetry breaking techniques in improving
the computational time of solving these problems.

▶ the evaluation from two perspectives: number of VMs offers, respectively
number of deployed instances of components.

#ins #ofr=20 #ofr=40 #ofr=250 #ofr=500

Chuffed

3 2.13 4.18 57.72 458.21
4 26.03 114.18 1974.16 -
5 638.26 2230.39 - -

OR-Tools

3 3.52 8.42 96.38 191.38
4 23.25 56.47 502.71 988.33
5 149.47 428.98 - -
6 494.46 1174.36 - -

IBM CPLEX

3 9.81 - - -
4 124.68 - - -
5 452.32 - - -
6 737.89 - - -

Z3

3 2.92 4.13 115.36 391.87
4 46.46 366.24 - -

22.4/ 33

Experimental Analysis I

Goals:

▶ study the scalability of state-of-the-art general CP, MP and SMT tools in
solving COPs corresponding to the deployment of component-based
applications in the Cloud

▶ effectiveness of various static symmetry breaking techniques in improving
the computational time of solving these problems.

▶ the evaluation from two perspectives: number of VMs offers, respectively
number of deployed instances of components.

#ins #ofr=20 #ofr=40 #ofr=250 #ofr=500

Chuffed

3 2.13 4.18 57.72 458.21
4 26.03 114.18 1974.16 -
5 638.26 2230.39 - -

OR-Tools

3 3.52 8.42 96.38 191.38
4 23.25 56.47 502.71 988.33
5 149.47 428.98 - -
6 494.46 1174.36 - -

IBM CPLEX

3 9.81 - - -
4 124.68 - - -
5 452.32 - - -
6 737.89 - - -

Z3

3 2.92 4.13 115.36 391.87
4 46.46 366.24 - -

22.5/ 33

Symmetries

▶ A symmetry is a bijection on decision variables (i.e. a, t) that preserves
solutions and non-solutions.

▶ Symmetry often occurs because groups of objects within a matrix are
indistinguishable. This leads to row/column symmetries.

▶ Two variables are indistinguishable if some symmetry interchanges their
roles in all solutions and non-solutions (variable symmetry).

▶ Value symmetries can permute only the values of variables.

▶ A matrix has row/column symmetry iff all the rows/columns of one of its
matrices are indistinguishable.

▶ A matrix has partial row/column symmetry iff strict subset(s) of the
rows/columns are indistinguishable.

Partial row/column symmetry are more often encountered in Cloud deployment
problems.

23.1/ 33

Symmetries

▶ A symmetry is a bijection on decision variables (i.e. a, t) that preserves
solutions and non-solutions.

▶ Symmetry often occurs because groups of objects within a matrix are
indistinguishable. This leads to row/column symmetries.

▶ Two variables are indistinguishable if some symmetry interchanges their
roles in all solutions and non-solutions (variable symmetry).

▶ Value symmetries can permute only the values of variables.

▶ A matrix has row/column symmetry iff all the rows/columns of one of its
matrices are indistinguishable.

▶ A matrix has partial row/column symmetry iff strict subset(s) of the
rows/columns are indistinguishable.

Partial row/column symmetry are more often encountered in Cloud deployment
problems.

23.2/ 33

Symmetries

▶ A symmetry is a bijection on decision variables (i.e. a, t) that preserves
solutions and non-solutions.

▶ Symmetry often occurs because groups of objects within a matrix are
indistinguishable. This leads to row/column symmetries.

▶ Two variables are indistinguishable if some symmetry interchanges their
roles in all solutions and non-solutions (variable symmetry).

▶ Value symmetries can permute only the values of variables.

▶ A matrix has row/column symmetry iff all the rows/columns of one of its
matrices are indistinguishable.

▶ A matrix has partial row/column symmetry iff strict subset(s) of the
rows/columns are indistinguishable.

Partial row/column symmetry are more often encountered in Cloud deployment
problems.

23.3/ 33

Symmetries

▶ A symmetry is a bijection on decision variables (i.e. a, t) that preserves
solutions and non-solutions.

▶ Symmetry often occurs because groups of objects within a matrix are
indistinguishable. This leads to row/column symmetries.

▶ Two variables are indistinguishable if some symmetry interchanges their
roles in all solutions and non-solutions (variable symmetry).

▶ Value symmetries can permute only the values of variables.

▶ A matrix has row/column symmetry iff all the rows/columns of one of its
matrices are indistinguishable.

▶ A matrix has partial row/column symmetry iff strict subset(s) of the
rows/columns are indistinguishable.

Partial row/column symmetry are more often encountered in Cloud deployment
problems.

23.4/ 33

Symmetries

▶ A symmetry is a bijection on decision variables (i.e. a, t) that preserves
solutions and non-solutions.

▶ Symmetry often occurs because groups of objects within a matrix are
indistinguishable. This leads to row/column symmetries.

▶ Two variables are indistinguishable if some symmetry interchanges their
roles in all solutions and non-solutions (variable symmetry).

▶ Value symmetries can permute only the values of variables.

▶ A matrix has row/column symmetry iff all the rows/columns of one of its
matrices are indistinguishable.

▶ A matrix has partial row/column symmetry iff strict subset(s) of the
rows/columns are indistinguishable.

Partial row/column symmetry are more often encountered in Cloud deployment
problems.

23.5/ 33

Symmetries

▶ A symmetry is a bijection on decision variables (i.e. a, t) that preserves
solutions and non-solutions.

▶ Symmetry often occurs because groups of objects within a matrix are
indistinguishable. This leads to row/column symmetries.

▶ Two variables are indistinguishable if some symmetry interchanges their
roles in all solutions and non-solutions (variable symmetry).

▶ Value symmetries can permute only the values of variables.

▶ A matrix has row/column symmetry iff all the rows/columns of one of its
matrices are indistinguishable.

▶ A matrix has partial row/column symmetry iff strict subset(s) of the
rows/columns are indistinguishable.

Partial row/column symmetry are more often encountered in Cloud deployment
problems.

23.6/ 33

Symmetries

▶ A symmetry is a bijection on decision variables (i.e. a, t) that preserves
solutions and non-solutions.

▶ Symmetry often occurs because groups of objects within a matrix are
indistinguishable. This leads to row/column symmetries.

▶ Two variables are indistinguishable if some symmetry interchanges their
roles in all solutions and non-solutions (variable symmetry).

▶ Value symmetries can permute only the values of variables.

▶ A matrix has row/column symmetry iff all the rows/columns of one of its
matrices are indistinguishable.

▶ A matrix has partial row/column symmetry iff strict subset(s) of the
rows/columns are indistinguishable.

Partial row/column symmetry are more often encountered in Cloud deployment
problems.

23.7/ 33

Symmetries

▶ A symmetry is a bijection on decision variables (i.e. a, t) that preserves
solutions and non-solutions.

▶ Symmetry often occurs because groups of objects within a matrix are
indistinguishable. This leads to row/column symmetries.

▶ Two variables are indistinguishable if some symmetry interchanges their
roles in all solutions and non-solutions (variable symmetry).

▶ Value symmetries can permute only the values of variables.

▶ A matrix has row/column symmetry iff all the rows/columns of one of its
matrices are indistinguishable.

▶ A matrix has partial row/column symmetry iff strict subset(s) of the
rows/columns are indistinguishable.

Partial row/column symmetry are more often encountered in Cloud deployment
problems.

23.8/ 33

Symmetry Breaking: Column Symmetries

Ordering decreasing

▶ (L) the columns by the number of components for columns representing
VMs of the same type:

N∑
i=1

aik ≥
N∑
i=1

ai(k+1), ∀k = 1,N − 1

▶ (LX) the columns by lexicographic order for columns representing VMs of
the same type

a⋆k ≻lex a⋆(k+1), where a⋆k denotes the column k.

▶ (PR) ordering decreasing the VMs by their characteristics (price, CPU,
memory, storage)

P1 ≥ P2 ≥ ... ≥ PN , ∀k = 1,N

24.1/ 33

Symmetry Breaking: Row Symmetries

(FV) pre-assigning, on separate VMs, the components composing the clique
with maximum deployment size obtained from the conflict graph, i.e. the graph
where the component instances are the nodes and the conflicts are the edges.

Example (FV: Wordpress with 3
Wordpress instances)

There are 3 cliques with maximum
deployment size 4. Pick one:

▶ [2MySQL, 2Varnish]

▶
[3Wordpress, 1HTTPLoadBalancer]

▶
[3Wordpress, 1DNSLoadBalancer]

Examples of cliques

25.1/ 33

Symmetry Breaking: Row Symmetries (cont’d)

Example (FV: Wordpress with 3 Wordpress instances)

Clique with maximum deployment size 4: [2MySQL, 2Varnish]

V1 V2 V3 V4 V5 V6

C1 ? ? ? ? ? ?
C2 1 1 0 0 ? ?
C3 ? ? ? ? ? ?
C4 ? ? ? ? ? ?
C5 0 0 1 1 ? ?

26.1/ 33

Symmetry Breaking: Finite combination of row and column symmetries

▶ FV, PR, L, LX,

▶ FVPR, FVL, FVLX, PRL, PRLX, LPR, LLX,

▶ FVPRL, FVPRLX, FVLPR,
FVLLX, PRLLX, LPRLX,

▶ FVPRLLX, FVLPRLX

Example (PRLX (Wordpress with 3 Wordpress instances))

The assignment matrix:
V1 V2 V3 V4 V5 V6

C1 1 1 1 0 0 0
C2 1 1 0 0 0 0
C3 0 0 0 0 0 0
C4 0 0 0 1 0 0
C5 0 0 0 0 1 1

The price vector: p = [379, 379, 210, 210, 210, 210].
Symmetry breakers:

P1 ≥ P2 ∧
P1 = P2 ⇒ a11 ≥ a12 ∧
P1 = P2 ∧ a11 ≥ a12 ⇒ a21 ≥ a22 ∧
P1 = P2 ∧ a11 = a12 ⇒ a31 = a32 ∧
P2 ≥ P3 ∧ ...

27.1/ 33

Contents

Motivation

Problem Specification and Solution

Zooming-in: The Problem of Selection and Distribution/assignment
Example: Wordpress Application
Problem Formalization
Solution Approaches
Experimental Analysis I

Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results II

Conclusions and Discussion

28.1/ 33

Experimental Results II

29.1/ 33

Symmetry Breaking: Row-Column Symmetries (cont’d)

Best symmetry breaker for Z3: FVPR
Remark: Combination of more than two symmetry breakers did not lead to
better results although more symmetries are broken. This means that breaking
more symmetries does not necessarily mean a computational improvement,
since more more constraints are added.

30.1/ 33

Contents

Motivation

Problem Specification and Solution

Zooming-in: The Problem of Selection and Distribution/assignment
Example: Wordpress Application
Problem Formalization
Solution Approaches
Experimental Analysis I

Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results II

Conclusions and Discussion

31.1/ 33

Conclusions

▶ We proposed several strategies to tackle the scalability issues in the case
of optimal deployment of Wordpress application in the Cloud.

▶ The Wordpress problem:

▶ was accepted at the CSPLib initiative
https://www.csplib.org/Problems/prob090/

▶ was submitted to the Minizinc 2022 Challenge
https://www.minizinc.org/challenge2022/challenge.html

▶ available on Github
https://github.com/BogdanD02/Cloud-Resource-Provisioning release
V1.0.0 together with experimental results for other case studies

▶ Using symmetry breakers, we were able to solve use cases with up to 30
component instances and 500 Cloud offers.

▶ Observation: Number of variables and clauses is not really relevant as they
can actually easy the problem to be solved.

32.1/ 33

https://www.csplib.org/Problems/prob090/
https://www.minizinc.org/challenge2022/challenge.html
https://github.com/BogdanD02/Cloud-Resource-Provisioning

Conclusions

▶ We proposed several strategies to tackle the scalability issues in the case
of optimal deployment of Wordpress application in the Cloud.

▶ The Wordpress problem:

▶ was accepted at the CSPLib initiative
https://www.csplib.org/Problems/prob090/

▶ was submitted to the Minizinc 2022 Challenge
https://www.minizinc.org/challenge2022/challenge.html

▶ available on Github
https://github.com/BogdanD02/Cloud-Resource-Provisioning release
V1.0.0 together with experimental results for other case studies

▶ Using symmetry breakers, we were able to solve use cases with up to 30
component instances and 500 Cloud offers.

▶ Observation: Number of variables and clauses is not really relevant as they
can actually easy the problem to be solved.

32.2/ 33

https://www.csplib.org/Problems/prob090/
https://www.minizinc.org/challenge2022/challenge.html
https://github.com/BogdanD02/Cloud-Resource-Provisioning

Conclusions

▶ We proposed several strategies to tackle the scalability issues in the case
of optimal deployment of Wordpress application in the Cloud.

▶ The Wordpress problem:
▶ was accepted at the CSPLib initiative

https://www.csplib.org/Problems/prob090/

▶ was submitted to the Minizinc 2022 Challenge
https://www.minizinc.org/challenge2022/challenge.html

▶ available on Github
https://github.com/BogdanD02/Cloud-Resource-Provisioning release
V1.0.0 together with experimental results for other case studies

▶ Using symmetry breakers, we were able to solve use cases with up to 30
component instances and 500 Cloud offers.

▶ Observation: Number of variables and clauses is not really relevant as they
can actually easy the problem to be solved.

32.3/ 33

https://www.csplib.org/Problems/prob090/
https://www.minizinc.org/challenge2022/challenge.html
https://github.com/BogdanD02/Cloud-Resource-Provisioning

Conclusions

▶ We proposed several strategies to tackle the scalability issues in the case
of optimal deployment of Wordpress application in the Cloud.

▶ The Wordpress problem:
▶ was accepted at the CSPLib initiative

https://www.csplib.org/Problems/prob090/
▶ was submitted to the Minizinc 2022 Challenge

https://www.minizinc.org/challenge2022/challenge.html

▶ available on Github
https://github.com/BogdanD02/Cloud-Resource-Provisioning release
V1.0.0 together with experimental results for other case studies

▶ Using symmetry breakers, we were able to solve use cases with up to 30
component instances and 500 Cloud offers.

▶ Observation: Number of variables and clauses is not really relevant as they
can actually easy the problem to be solved.

32.4/ 33

https://www.csplib.org/Problems/prob090/
https://www.minizinc.org/challenge2022/challenge.html
https://github.com/BogdanD02/Cloud-Resource-Provisioning

Conclusions

▶ We proposed several strategies to tackle the scalability issues in the case
of optimal deployment of Wordpress application in the Cloud.

▶ The Wordpress problem:
▶ was accepted at the CSPLib initiative

https://www.csplib.org/Problems/prob090/
▶ was submitted to the Minizinc 2022 Challenge

https://www.minizinc.org/challenge2022/challenge.html
▶ available on Github

https://github.com/BogdanD02/Cloud-Resource-Provisioning release
V1.0.0 together with experimental results for other case studies

▶ Using symmetry breakers, we were able to solve use cases with up to 30
component instances and 500 Cloud offers.

▶ Observation: Number of variables and clauses is not really relevant as they
can actually easy the problem to be solved.

32.5/ 33

https://www.csplib.org/Problems/prob090/
https://www.minizinc.org/challenge2022/challenge.html
https://github.com/BogdanD02/Cloud-Resource-Provisioning

Conclusions

▶ We proposed several strategies to tackle the scalability issues in the case
of optimal deployment of Wordpress application in the Cloud.

▶ The Wordpress problem:
▶ was accepted at the CSPLib initiative

https://www.csplib.org/Problems/prob090/
▶ was submitted to the Minizinc 2022 Challenge

https://www.minizinc.org/challenge2022/challenge.html
▶ available on Github

https://github.com/BogdanD02/Cloud-Resource-Provisioning release
V1.0.0 together with experimental results for other case studies

▶ Using symmetry breakers, we were able to solve use cases with up to 30
component instances and 500 Cloud offers.

▶ Observation: Number of variables and clauses is not really relevant as they
can actually easy the problem to be solved.

32.6/ 33

https://www.csplib.org/Problems/prob090/
https://www.minizinc.org/challenge2022/challenge.html
https://github.com/BogdanD02/Cloud-Resource-Provisioning

Conclusions

▶ We proposed several strategies to tackle the scalability issues in the case
of optimal deployment of Wordpress application in the Cloud.

▶ The Wordpress problem:
▶ was accepted at the CSPLib initiative

https://www.csplib.org/Problems/prob090/
▶ was submitted to the Minizinc 2022 Challenge

https://www.minizinc.org/challenge2022/challenge.html
▶ available on Github

https://github.com/BogdanD02/Cloud-Resource-Provisioning release
V1.0.0 together with experimental results for other case studies

▶ Using symmetry breakers, we were able to solve use cases with up to 30
component instances and 500 Cloud offers.

▶ Observation: Number of variables and clauses is not really relevant as they
can actually easy the problem to be solved.

32.7/ 33

https://www.csplib.org/Problems/prob090/
https://www.minizinc.org/challenge2022/challenge.html
https://github.com/BogdanD02/Cloud-Resource-Provisioning

Discussion

▶ Application of the solution in practice (with Vlad Luca)

SAGE

SAGE

Predeployer

SAGEOpt Translator

Optimal

Solution

App

Description

Cloud

Offers

SAGE

manifest

files

Boreas

manifest

files

K8s

manifest

files
K8s Cluster

Figure: SAGE General Architecture

▶ Use graph neural networks for handling the third step of the automated
deployment (dynamic modification to cope with peaks of user requests)
(with Eduard Laitin)

▶ A more formal explanation why combination of more symmetry breakers
does not improve the computational time

▶ Barrier: static symmetry breakers interfere with the black-box
implementation of an SMT solver.

▶ Solution: Dynamic symmetry breakers.

33.1/ 33

Discussion

▶ Application of the solution in practice (with Vlad Luca)

SAGE

SAGE

Predeployer

SAGEOpt Translator

Optimal

Solution

App

Description

Cloud

Offers

SAGE

manifest

files

Boreas

manifest

files

K8s

manifest

files
K8s Cluster

Figure: SAGE General Architecture

▶ Use graph neural networks for handling the third step of the automated
deployment (dynamic modification to cope with peaks of user requests)
(with Eduard Laitin)

▶ A more formal explanation why combination of more symmetry breakers
does not improve the computational time

▶ Barrier: static symmetry breakers interfere with the black-box
implementation of an SMT solver.

▶ Solution: Dynamic symmetry breakers.

33.2/ 33

Discussion

▶ Application of the solution in practice (with Vlad Luca)

SAGE

SAGE

Predeployer

SAGEOpt Translator

Optimal

Solution

App

Description

Cloud

Offers

SAGE

manifest

files

Boreas

manifest

files

K8s

manifest

files
K8s Cluster

Figure: SAGE General Architecture

▶ Use graph neural networks for handling the third step of the automated
deployment (dynamic modification to cope with peaks of user requests)
(with Eduard Laitin)

▶ A more formal explanation why combination of more symmetry breakers
does not improve the computational time

▶ Barrier: static symmetry breakers interfere with the black-box
implementation of an SMT solver.

▶ Solution: Dynamic symmetry breakers.

33.3/ 33

Discussion

▶ Application of the solution in practice (with Vlad Luca)

SAGE

SAGE

Predeployer

SAGEOpt Translator

Optimal

Solution

App

Description

Cloud

Offers

SAGE

manifest

files

Boreas

manifest

files

K8s

manifest

files
K8s Cluster

Figure: SAGE General Architecture

▶ Use graph neural networks for handling the third step of the automated
deployment (dynamic modification to cope with peaks of user requests)
(with Eduard Laitin)

▶ A more formal explanation why combination of more symmetry breakers
does not improve the computational time

▶ Barrier: static symmetry breakers interfere with the black-box
implementation of an SMT solver.

▶ Solution: Dynamic symmetry breakers.

33.4/ 33

Discussion

▶ Application of the solution in practice (with Vlad Luca)

SAGE

SAGE

Predeployer

SAGEOpt Translator

Optimal

Solution

App

Description

Cloud

Offers

SAGE

manifest

files

Boreas

manifest

files

K8s

manifest

files
K8s Cluster

Figure: SAGE General Architecture

▶ Use graph neural networks for handling the third step of the automated
deployment (dynamic modification to cope with peaks of user requests)
(with Eduard Laitin)

▶ A more formal explanation why combination of more symmetry breakers
does not improve the computational time
▶ Barrier: static symmetry breakers interfere with the black-box

implementation of an SMT solver.

▶ Solution: Dynamic symmetry breakers.

33.5/ 33

Discussion

▶ Application of the solution in practice (with Vlad Luca)

SAGE

SAGE

Predeployer

SAGEOpt Translator

Optimal

Solution

App

Description

Cloud

Offers

SAGE

manifest

files

Boreas

manifest

files

K8s

manifest

files
K8s Cluster

Figure: SAGE General Architecture

▶ Use graph neural networks for handling the third step of the automated
deployment (dynamic modification to cope with peaks of user requests)
(with Eduard Laitin)

▶ A more formal explanation why combination of more symmetry breakers
does not improve the computational time
▶ Barrier: static symmetry breakers interfere with the black-box

implementation of an SMT solver.
▶ Solution: Dynamic symmetry breakers.

33.6/ 33

	Motivation
	Problem Specification and Solution
	Zooming-in: The Problem of Selection and Distribution/assignment
	Example: Wordpress Application
	Problem Formalization
	Solution Approaches
	Experimental Analysis I
	Experimental Results II

	Conclusions and Discussion

