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Motivation

Traffic sign classification is an integral part of any vision system for autonomous driving.

Steps for traffic sign classification:

▶ isolating the traffic sign in a bounding box

▶ classifying the sign into a specific traffic class.
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Motivation (cont’d)

Well-know problem of the classifiers: the lack of robustness1 2.

Modified from https://deepdrive.berkeley.edu

Solution:

▶ probabilistic methods: traditionally used, have proven limitations

▶ logical methods: recently explored, scalability issues ⇝ this presentation, our long time
goal

1Szegedy, Christian, et al. ”Intriguing properties of neural networks.” arXiv preprint arXiv:1312.6199 (2013).
2Guo, Xingwu, et al. ”OccRob: Efficient SMT-Based Occlusion Robustness Verification of Deep Neural

Networks.” TACAS 2023.
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Motivation (cont’d)

Well-know limitation in autonomous driving: computationally limited and energy-constrained
devices.

Solution: Binary neural network (BNN)3 - a feedforward network where weights and activations
are mainly binary.

The absence of BNN models specifically tailored for traffic sign recognition poses a significant
gap and a unusual situation, knowing the benefits of BNNs ⇝ we constructed BNN models
with high accuracy.

These models should have high accuracy while amenable for formal verification.

3Hubara, Itay, et al. ”Binarized neural networks.” Advances in neural information processing systems 29
(2016).
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Motivation (cont’d)

Characteristics that count in machine learning and formal verification:

▶ Layers’ type: convolution (Conv), sign (Sgn), max pooling (MP), batch normalization
(BN), fully connected (FC)

▶ Number of parameters

▶ Sparsity

▶ Number of classes

From https://www.analyticsvidhya.com/blog/2022/01/convolutional-neural-network-an-overview/

https://www.analyticsvidhya.com/blog/2022/01/convolutional-neural-network-an-overview/
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Problem Specification: Verification of BNNs.

Given a trained model and a property to be verified, does the model satisfy that property?

Approach:

▶ The verification problem is translated into a constrained satisfaction problem.

▶ Existing verification tools can be used to solve it.

Challenges:

▶ NP-complete problem4

▶ How to formalize the property to be verified

4Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: An efficient SMT solver for verifying
deep neural networks. Supplementary Material (2017). https://arxiv.org/abs/1702.01135
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Data collection
Training:

▶ GTSRB (German) traffic sign dataset.
▶ Classes: 43,
▶ Size: from 25 × 25 to 243 × 225, and not all of

them are square.
▶ Each class: 210 - 2250 images
▶ 39209 images used for training and validation with

ratio 80:20

Testing:

▶ GTSRB (German) traffic sign dataset.
▶ 12630 images used for testing

▶ Belgium traffic sign dataset.
▶ Number of images = 4533.
▶ Only 23 classes match the one from GTSRB.

▶ Chinese traffic sign dataset.
▶ Number of images = 1818.
▶ Only 15 classes match the one from GTSRB.
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Data analysis

Difference between Belgium (left) and
GTSRB (right) dataset

Difference between Chinese (left) and GTSRB
(right) dataset
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BNNs Architectures with Best Accuracy5

The architectures below were obtained by a bottom-up approach, starting with simple layers
(fully connected) and stacking new more complicated ones for higher accuracy.

Figure: Architecture with Best Accuracy for GTSRB (96.45%) and Belgium (88.17%) dataset.
Input: 64 px x 64 px

Figure: Architecture with Best Accuracy (83.9%) for Chinese dataset. Input: 48 px x 48 px

5More details in: A. Postovan, M, Eraşcu. Architecturing binarized neural networks for traffic sign
recognition. to appear in ICANN 2023



XNOR Architecture

Figure: XNOR(QConv) architecture

Table: XNOR(QConv) architecture. Image size: 30px × 30px. Dataset for train and test: GTSRB.

Model description Acc
#Binary
Params

Model Size (in KiB)
Binary Float-32

QConv(16, 3×3), QConv(32, 2×2), D(43) 81.54 1005584 122.75 3932.16
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Definition of the Property to be Verified

Property to be verified: robustness – refers to their ability to maintain stable and accurate
outputs in the presence of perturbations or adversarial inputs. Adversarial inputs are
intentionally crafted inputs designed to deceive or mislead the network’s predictions.

▶ Local robustness ensures that for a given input x from a set χ, the neural network F
remains unchanged within a specified perturbation radius ϵ, implying that small variations
in the input space do not result in different outputs. The output for the input x is
represented by its label lx . We consider L∞ norm defined as ||x ||∞ = sup

n
|xn|.

▶ Global robustness is extension of the local robustness and it is defined as the expected
maximum safe radius over a given test dataset, representing a collection of inputs.

Definition of local robustness useful in a computational setting. A network is ϵ-locally
robust in the input x if for every x ′, such that ||x − x ′||∞ ≤ ϵ, the network assigns the same
label to x and x ′.



Definition of the Property to be Verified

Property to be verified: robustness – refers to their ability to maintain stable and accurate
outputs in the presence of perturbations or adversarial inputs. Adversarial inputs are
intentionally crafted inputs designed to deceive or mislead the network’s predictions.

▶ Local robustness ensures that for a given input x from a set χ, the neural network F
remains unchanged within a specified perturbation radius ϵ, implying that small variations
in the input space do not result in different outputs. The output for the input x is
represented by its label lx . We consider L∞ norm defined as ||x ||∞ = sup

n
|xn|.

▶ Global robustness is extension of the local robustness and it is defined as the expected
maximum safe radius over a given test dataset, representing a collection of inputs.

Definition of local robustness useful in a computational setting. A network is ϵ-locally
robust in the input x if for every x ′, such that ||x − x ′||∞ ≤ ϵ, the network assigns the same
label to x and x ′.



Definition of the Property to be Verified

Property to be verified: robustness – refers to their ability to maintain stable and accurate
outputs in the presence of perturbations or adversarial inputs. Adversarial inputs are
intentionally crafted inputs designed to deceive or mislead the network’s predictions.

▶ Local robustness ensures that for a given input x from a set χ, the neural network F
remains unchanged within a specified perturbation radius ϵ, implying that small variations
in the input space do not result in different outputs. The output for the input x is
represented by its label lx . We consider L∞ norm defined as ||x ||∞ = sup

n
|xn|.

▶ Global robustness is extension of the local robustness and it is defined as the expected
maximum safe radius over a given test dataset, representing a collection of inputs.

Definition of local robustness useful in a computational setting. A network is ϵ-locally
robust in the input x if for every x ′, such that ||x − x ′||∞ ≤ ϵ, the network assigns the same
label to x and x ′.



Definition of the Property to be Verified

Property to be verified: robustness – refers to their ability to maintain stable and accurate
outputs in the presence of perturbations or adversarial inputs. Adversarial inputs are
intentionally crafted inputs designed to deceive or mislead the network’s predictions.

▶ Local robustness ensures that for a given input x from a set χ, the neural network F
remains unchanged within a specified perturbation radius ϵ, implying that small variations
in the input space do not result in different outputs. The output for the input x is
represented by its label lx . We consider L∞ norm defined as ||x ||∞ = sup

n
|xn|.

▶ Global robustness is extension of the local robustness and it is defined as the expected
maximum safe radius over a given test dataset, representing a collection of inputs.

Definition of local robustness useful in a computational setting. A network is ϵ-locally
robust in the input x if for every x ′, such that ||x − x ′||∞ ≤ ϵ, the network assigns the same
label to x and x ′.



Contents

Motivation

Problem Specification

Training
Data collection
Data analysis
BNNs Models

Verification
Definition of the Property to be Verified
Property Specification
Benchmarks Proposal and Experimental Results of the VNN-COMP 2023

Conclusion and Future Work



Property Specification
In VNN-LIB standard which uses the SMT-LIB format.

A VNN-LIB file is structured as follows:
1. definition of input variables representing the values of the pixels Xi (i = 1,P, where P is

the dimension of the input image: N ×M × 3 pixels).
2. definition of the output variables representing the values Yj (j = 1, L, where L is the

number of classes of the images in the dataset).
3. bounding constraints for the input variables: local robustness definition is used for

generating the property taking into account that vector x (its elements are the values of
the pixels of the image) and ε (perturbation) are known.
(assert (<= X_2699 34.00000000))

(assert (>= X_2699 14.00000000))

4. constraints involving the output variables assessing the value of the output label.
(assert (or (>= Y_0 Y_38)

...

(>= Y_37 Y_38)

(>= Y_39 Y_38)

...

(>= Y_42 Y_38)))
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Model Representation: Open Neural Network Exchange (ONNX)

▶ storage and organization of large amounts of data, including the parameters and
architecture of machine learning models

▶ vendor-neutral

▶ ONNX representation of the neural network is transformed into a constraint satisfaction
problem in the VNN-LIB format
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Benchmarks Proposal

VNN-COMP 2023:

▶ neural network models in ONNX format

▶ property specification in VNN-LIB format

Characteristics of the previous models to be verified

# of Params
Input

Dimension
Sparsity # of Regions

905k-1.7M 2.7k-12k 0% 43 or 38

Adversarial robustness property: property specifications encompass perturbations within the
infinity norm around zero, with radius denoted as ϵ = {1, 3, 5, 10, 15}.
Randomly selected 3 distinct images from the test set of the GTSRB dataset for each model
and have generated the VNN-LIB files for each epsilon in the set, in the way we ended up
having 45 VNN-LIB files in total.

Timeout of 480 seconds was allocated for each instance, in total 6 hours for all instances.

Our benchmark was used for scoring the competing tools but different images were chosen in
order to avoid tuning of the solvers for precise instances.
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Experimental Results of the VNN-COMP 2023

Table: VNN-COMP 2023 Results for Traffic Signs Recognition Benchmark

# Tool Verified Falsified Fastest Penalty Score Percent
1 Marabou 0 18 0 1 30 100%
2 PyRAT 0 7 0 1 -80 0%
3 NeuralSAT 0 31 0 4 -290 0%
4 alpha-beta-CROWN 0 39 0 3 -60 0%

▶ Verified is number of instances that were UNSAT (no counterexample) and proven by the
tool.

▶ Falsified is number that were SAT (counterexample was found) and reported by the tool.

▶ Fastest is the number where the tool was fastest (this did not impact the scoring in this
year competition). Penalty is the number where the tool gave the incorrect result or did
not produce a valid counterexample.

▶ Score is the sum of scores (10 points for each correct answer and −150 for incorrect ones).

▶ Percent is the score of the tool divided by the best score for the benchmark (so the tool
with the highest score for each benchmark gets 100) and was used to determine final
scores across all benchmarks.



Contents

Motivation

Problem Specification

Training
Data collection
Data analysis
BNNs Models

Verification
Definition of the Property to be Verified
Property Specification
Benchmarks Proposal and Experimental Results of the VNN-COMP 2023

Conclusion and Future Work



Conclusion and Future Work

Conclusion

▶ Proposal of BNNs benchmarks for local robustness verification.

▶ VNN-COMP 2023 evaluation: 4 out of 7 competing tools produced results.

Future Work

▶ Investigate for which architectures the previous results were obtained.

▶ Investigate the potential for solving more instances by extending the time limit (currently
set at 8 minutes).

▶ Understand the factors contributing to incorrect outputs from the tools on specific
benchmark tasks.
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