
Understanding the Symmetries of Bin Packing Problems
Inspired by Application Deployment in the Cloud

Mădălina Eraşcu

West University of Timişoara, Romania

madalina.erascu@e-uvt.ro

Dagstuhl Seminar: Automated mathematics: integrating proofs, algorithms and data

Joint work with Bogdan David, Flavia Micota and Daniela Zaharie

October 6th, 2023

This work was patially supported by grants of the Romanian National Authority for
Scientific Research and Innovation, CNCS/CCCDI - UEFISCDI: projects number
PN-III-P2-2.1-PED-2016-0550 and PN-III-P1-1.1-TE-2021-0676 within PNCDI III.

Outline

Problem Specification

Case Study

Problem Formalization

Solution Approaches
Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results

Discussion

Contents

Problem Specification

Case Study

Problem Formalization

Solution Approaches
Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results

Discussion

Problem Specification

Contents

Problem Specification

Case Study

Problem Formalization

Solution Approaches
Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results

Discussion

Case Study: Wordpress Application

Wordpress (www.wordpress.com) is an open-source application frequently used
in creating websites, blogs and web applications.

▶ DNSLoadBalancer requires at least
1 instance of Wordpress and can
serve at most 7 such instances
(Require-Provide constraint)

▶ Only one type of balancer must be
deployed (Exclusive deployment
constraint).

▶ Components are characterized in
terms of their resource demand
(i.e. in terms of CPU cores, RAM
and storage capacity).

▶ ...

Cloud Providers Offers

Remark: [snapshot from https://aws.amazon.com/ec2/] tens of thousands of
price offers corresponding to different configurations and zones

Contents

Problem Specification

Case Study

Problem Formalization

Solution Approaches
Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results

Discussion

Problem Formalization

General constraints

Basic allocation
M∑
k=1

aik ≥ 1 ∀i = 1,N

Occupancy
N∑
i=1

aik ≥ 1 ⇒ vk = 1 ∀k = 1,M

Capacity
N∑
i=1

aik · Rh
i ≤ F h

tk ∀k = 1,M, ∀h = 1,H

Link vk=1 ∧ tk=o ⇒
H∧

h=1

(
rhk=F

h
tk

)
∧ pk=Ptk ∀o = 1,O, O ∈ N∗∑N

i=1 aik = 0 ⇒ tk = 0 ∀k = 1,M

where:

▶ Rh
i ∈ N∗ is the hardware requirement of type h of the component i ;

▶ F h
tk ∈ N∗ is the hardware characteristic h of the VM of type tk .

Problem Formalization (cont’d)

Application-specific constraints

Conflicts aik + ajk ≤ 1 ∀k = 1,M, ∀(i , j) Rij = 1

Co-location aik = ajk ∀k = 1,M, ∀(i , j) Dij = 1
Exclusive deployment

H
(

M∑
k=1

ai1k

)
+ ...+H

(
M∑
k=1

aiqk

)
= 1 for fixed q ∈ {1, ...,N}

H(u) =

{
1 u > 0

0 u = 0

Require- Provide

nij
M∑
k=1

aik ≤ mij

M∑
k=1

ajk ∀(i , j)Qij(nij ,mij) = 1

0 ≤ n
M∑
k=1

ajk −
M∑
k=1

aik < n n, nij ,mij ∈ N∗

where:
▶ Rij = 1 if components i and j are in conflict (can not be placed in the

same VM);
▶ Dij = 1 if components i and j must be co-located (must be placed in the

same VM);
▶ Qij(n,m)=1 if Ci requires at least n instances of Cj and Cj can serve at

most m instances of Ci

Problem Formalization (cont’d)

Application-specific constraints

Full deployment
M∑
k=1

(
aik +H

(∑
j,Rij=1

ajk

))
=

M∑
k=1

vk

Deployment with bounded number of instances∑
i∈C

M∑
k=1

aik⟨op⟩n |C | ≤ N, ⟨op⟩∈{=,≤,≥}, n∈N

Find:

▶ assignment matrix a with binary entries aik ∈ {0, 1} for i = 1,N,
k = 1,M, which are interpreted as follows:

aik =

{
1 if Ci is assigned to Vk

0 if Ci is not assigned to Vk .

▶ the type selection vector t with integer entries tk for k = 1,M,
representing the type (from a predefined set) of each VM leased.

Such that: the leasing price is minimal
M∑
k=1

vk · pk

Characteristics of the problem

▶ Constrained optimization

▶ Linear programming: 0-1 + real/integer

▶ Related to bin packing but ...

▶ ... the placement of items in bins is limited by constraints

▶ ... the capacity of bins is not fixed (it depends on the offers)

▶ ... the number of items is not known (it depends on the constraints on the
number of instances)

▶ ... the smallest price is not necessarily obtained by using the smallest
number of bins

▶ NP-hard

Characteristics of the problem

▶ Constrained optimization

▶ Linear programming: 0-1 + real/integer

▶ Related to bin packing but ...

▶ ... the placement of items in bins is limited by constraints

▶ ... the capacity of bins is not fixed (it depends on the offers)

▶ ... the number of items is not known (it depends on the constraints on the
number of instances)

▶ ... the smallest price is not necessarily obtained by using the smallest
number of bins

▶ NP-hard

Characteristics of the problem

▶ Constrained optimization

▶ Linear programming: 0-1 + real/integer

▶ Related to bin packing but ...

▶ ... the placement of items in bins is limited by constraints

▶ ... the capacity of bins is not fixed (it depends on the offers)

▶ ... the number of items is not known (it depends on the constraints on the
number of instances)

▶ ... the smallest price is not necessarily obtained by using the smallest
number of bins

▶ NP-hard

Characteristics of the problem

▶ Constrained optimization

▶ Linear programming: 0-1 + real/integer

▶ Related to bin packing but ...

▶ ... the placement of items in bins is limited by constraints

▶ ... the capacity of bins is not fixed (it depends on the offers)

▶ ... the number of items is not known (it depends on the constraints on the
number of instances)

▶ ... the smallest price is not necessarily obtained by using the smallest
number of bins

▶ NP-hard

Characteristics of the problem

▶ Constrained optimization

▶ Linear programming: 0-1 + real/integer

▶ Related to bin packing but ...

▶ ... the placement of items in bins is limited by constraints

▶ ... the capacity of bins is not fixed (it depends on the offers)

▶ ... the number of items is not known (it depends on the constraints on the
number of instances)

▶ ... the smallest price is not necessarily obtained by using the smallest
number of bins

▶ NP-hard

Characteristics of the problem

▶ Constrained optimization

▶ Linear programming: 0-1 + real/integer

▶ Related to bin packing but ...

▶ ... the placement of items in bins is limited by constraints

▶ ... the capacity of bins is not fixed (it depends on the offers)

▶ ... the number of items is not known (it depends on the constraints on the
number of instances)

▶ ... the smallest price is not necessarily obtained by using the smallest
number of bins

▶ NP-hard

Characteristics of the problem

▶ Constrained optimization

▶ Linear programming: 0-1 + real/integer

▶ Related to bin packing but ...

▶ ... the placement of items in bins is limited by constraints

▶ ... the capacity of bins is not fixed (it depends on the offers)

▶ ... the number of items is not known (it depends on the constraints on the
number of instances)

▶ ... the smallest price is not necessarily obtained by using the smallest
number of bins

▶ NP-hard

Characteristics of the problem

▶ Constrained optimization

▶ Linear programming: 0-1 + real/integer

▶ Related to bin packing but ...

▶ ... the placement of items in bins is limited by constraints

▶ ... the capacity of bins is not fixed (it depends on the offers)

▶ ... the number of items is not known (it depends on the constraints on the
number of instances)

▶ ... the smallest price is not necessarily obtained by using the smallest
number of bins

▶ NP-hard

Contents

Problem Specification

Case Study

Problem Formalization

Solution Approaches
Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results

Discussion

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution

▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods
▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods
▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator

▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods
▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution

▶ Drawback: low success rate in case of larger instances

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

Solution Approaches

1. Exact methods

▶ Constrained Programming (CP)* ◦

▶ Modelling language: MiniZinc (https://www.minizinc.org)
▶ Solvers integrated with MiniZinc: Google OR-Tools, Gecode, Chuffed

▶ Mathematical Programming (MP)**
▶ Python CPLEX API

▶ Satisfiability Modulo Theory (SMT)**
▶ Python Z3 API

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods
▶ Population-based metaheuristic*

▶ Evolutionary algorithm that uses only mutation operator
▶ Advantage: always provides a (sub)optimal solution
▶ Drawback: low success rate in case of larger instances

◦ B. David, ”Constraint Optimization Approaches for Cloud Resource Provisioning,” National Scientific Session of Mathematics
and Informatics, November 25-27, 2021, Brasov, Romania.
* F. Micota, M. Eraşcu and D. Zaharie, ”Constraint Satisfaction Approaches in Cloud Resource Selection for Component Based
Applications,” 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 2018, pp. 443-450.
** M Eraşcu, F Micota, D Zaharie, ”Scalable optimal deployment in the cloud of component-based applications using
optimization modulo theory, mathematical programming and symmetry breaking”, Journal of Logical and Algebraic Methods in
Programming 121, 100664

https://www.minizinc.org

In this presentation: Speeding-up exact methods by symmetry breaking

Symmetries

▶ A symmetry is a bijection on decision variables (i.e. a, t) that preserves
solutions and non-solutions.

▶ Symmetry often occurs because groups of objects within a matrix are
indistinguishable. This leads to row/column symmetries.

▶ Two variables are indistinguishable if some symmetry interchanges their
roles in all solutions and non-solutions (variable symmetry).

▶ A matrix has row/column symmetry iff all the rows/columns of one of its
matrices are indistinguishable.

▶ A matrix has partial row/column symmetry iff strict subset(s) of the
rows/columns are indistinguishable.

Partial row/column symmetry are more often encountered in Cloud deployment
problems.

Symmetries

▶ A symmetry is a bijection on decision variables (i.e. a, t) that preserves
solutions and non-solutions.

▶ Symmetry often occurs because groups of objects within a matrix are
indistinguishable. This leads to row/column symmetries.

▶ Two variables are indistinguishable if some symmetry interchanges their
roles in all solutions and non-solutions (variable symmetry).

▶ A matrix has row/column symmetry iff all the rows/columns of one of its
matrices are indistinguishable.

▶ A matrix has partial row/column symmetry iff strict subset(s) of the
rows/columns are indistinguishable.

Partial row/column symmetry are more often encountered in Cloud deployment
problems.

Symmetries

▶ A symmetry is a bijection on decision variables (i.e. a, t) that preserves
solutions and non-solutions.

▶ Symmetry often occurs because groups of objects within a matrix are
indistinguishable. This leads to row/column symmetries.

▶ Two variables are indistinguishable if some symmetry interchanges their
roles in all solutions and non-solutions (variable symmetry).

▶ A matrix has row/column symmetry iff all the rows/columns of one of its
matrices are indistinguishable.

▶ A matrix has partial row/column symmetry iff strict subset(s) of the
rows/columns are indistinguishable.

Partial row/column symmetry are more often encountered in Cloud deployment
problems.

Symmetries

▶ A symmetry is a bijection on decision variables (i.e. a, t) that preserves
solutions and non-solutions.

▶ Symmetry often occurs because groups of objects within a matrix are
indistinguishable. This leads to row/column symmetries.

▶ Two variables are indistinguishable if some symmetry interchanges their
roles in all solutions and non-solutions (variable symmetry).

▶ A matrix has row/column symmetry iff all the rows/columns of one of its
matrices are indistinguishable.

▶ A matrix has partial row/column symmetry iff strict subset(s) of the
rows/columns are indistinguishable.

Partial row/column symmetry are more often encountered in Cloud deployment
problems.

Symmetries

▶ A symmetry is a bijection on decision variables (i.e. a, t) that preserves
solutions and non-solutions.

▶ Symmetry often occurs because groups of objects within a matrix are
indistinguishable. This leads to row/column symmetries.

▶ Two variables are indistinguishable if some symmetry interchanges their
roles in all solutions and non-solutions (variable symmetry).

▶ A matrix has row/column symmetry iff all the rows/columns of one of its
matrices are indistinguishable.

▶ A matrix has partial row/column symmetry iff strict subset(s) of the
rows/columns are indistinguishable.

Partial row/column symmetry are more often encountered in Cloud deployment
problems.

Symmetries

▶ A symmetry is a bijection on decision variables (i.e. a, t) that preserves
solutions and non-solutions.

▶ Symmetry often occurs because groups of objects within a matrix are
indistinguishable. This leads to row/column symmetries.

▶ Two variables are indistinguishable if some symmetry interchanges their
roles in all solutions and non-solutions (variable symmetry).

▶ A matrix has row/column symmetry iff all the rows/columns of one of its
matrices are indistinguishable.

▶ A matrix has partial row/column symmetry iff strict subset(s) of the
rows/columns are indistinguishable.

Partial row/column symmetry are more often encountered in Cloud deployment
problems.

Symmetries

▶ A symmetry is a bijection on decision variables (i.e. a, t) that preserves
solutions and non-solutions.

▶ Symmetry often occurs because groups of objects within a matrix are
indistinguishable. This leads to row/column symmetries.

▶ Two variables are indistinguishable if some symmetry interchanges their
roles in all solutions and non-solutions (variable symmetry).

▶ A matrix has row/column symmetry iff all the rows/columns of one of its
matrices are indistinguishable.

▶ A matrix has partial row/column symmetry iff strict subset(s) of the
rows/columns are indistinguishable.

Partial row/column symmetry are more often encountered in Cloud deployment
problems.

Symmetry Breaking: Column Symmetries

Ordering decreasing

▶ (L) the columns by the number of components for columns representing
VMs of the same type:

N∑
i=1

aik ≥
N∑
i=1

ai(k+1), ∀k = 1,N − 1

▶ (LX) the columns by lexicographic order for columns representing VMs of
the same type

a⋆k ≻lex a⋆(k+1), where a⋆k denotes the column k.

▶ (PR) ordering decreasing the VMs by their characteristics (price, CPU,
memory, storage)

P1 ≥ P2 ≥ ... ≥ PN , ∀k = 1,N

Symmetry Breaking: Row Symmetries

(FV) pre-assigning, on separate VMs, the components composing the clique
with maximum deployment size obtained from the conflict graph, i.e. the graph
where the component instances are the nodes and the conflicts are the edges.

Example (FV: Wordpress with 3
Wordpress instances)

There are 3 cliques with maximum
deployment size 4. Pick one:

▶ [2MySQL, 2Varnish]

▶
[3Wordpress, 1HTTPLoadBalancer]

▶
[3Wordpress, 1DNSLoadBalancer]

Examples of cliques

Symmetry Breaking: Row Symmetries (cont’d)

Example (FV: Wordpress with 3 Wordpress instances)

Clique with maximum deployment size 4: [2MySQL, 2Varnish]

V1 V2 V3 V4 V5 V6

C1 ? ? ? ? ? ?
C2 1 1 0 0 ? ?
C3 ? ? ? ? ? ?
C4 ? ? ? ? ? ?
C5 0 0 1 1 ? ?

Symmetry Breaking: Finite combination of row and column symmetries

▶ FV, PR, L, LX,

▶ FVPR, FVL, FVLX, PRL, PRLX, LPR, LLX,

▶ FVPRL, FVPRLX, FVLPR,
FVLLX, PRLLX, LPRLX,

▶ FVPRLLX, FVLPRLX

Example (PRLX (Wordpress with 3 Wordpress instances))

The assignment matrix:
V1 V2 V3 V4 V5 V6

C1 1 1 1 0 0 0
C2 1 1 0 0 0 0
C3 0 0 0 0 0 0
C4 0 0 0 1 0 0
C5 0 0 0 0 1 1

The price vector: p = [379, 379, 210, 210, 210, 210].
Symmetry breakers:

P1 ≥ P2 ∧
P1 = P2 ⇒ a11 ≥ a12 ∧
P1 = P2 ∧ a11 ≥ a12 ⇒ a21 ≥ a22 ∧
P1 = P2 ∧ a11 = a12 ⇒ a31 = a32 ∧
P2 ≥ P3 ∧ ...

Contents

Problem Specification

Case Study

Problem Formalization

Solution Approaches
Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results

Discussion

Experimental Results

Symmetry Breaking: Row-Column Symmetries (cont’d)

Best symmetry breaker for Z3: FVPR
Remark: Combination of more than two symmetry breakers did not lead to
better results although more symmetries are broken. This means that breaking
more symmetries does not necessarily mean a computational improvement,
since more more constraints are added.

Contents

Problem Specification

Case Study

Problem Formalization

Solution Approaches
Symmetries
Symmetry Breaking: Column Symmetries
Symmetry Breaking: Row Symmetries
Symmetry Breaking: Finite combination of row and column symmetries

Experimental Results

Discussion

Discussion

▶ SMT solvers proof certificates could help understanding why/when the
symmetry breaking strategies interact badly with the underlying techniques
implemented by the solvers.

▶ How do we know that a formula is indeed a symmetry breaker?

▶ How do we know if it is ”safe” to compose 2 or more symmetry breakers?

▶ Given a symmetry breaker, can we generate more symmetry breakers alike?

⇝ framework for understanding the symmetries of the underlying problem

Approaches:

▶ invariant theory - not clear how, not obvious

▶ group theory - maybe?

Discussion

▶ SMT solvers proof certificates could help understanding why/when the
symmetry breaking strategies interact badly with the underlying techniques
implemented by the solvers.

▶ How do we know that a formula is indeed a symmetry breaker?

▶ How do we know if it is ”safe” to compose 2 or more symmetry breakers?

▶ Given a symmetry breaker, can we generate more symmetry breakers alike?

⇝ framework for understanding the symmetries of the underlying problem

Approaches:

▶ invariant theory - not clear how, not obvious

▶ group theory - maybe?

Discussion

▶ SMT solvers proof certificates could help understanding why/when the
symmetry breaking strategies interact badly with the underlying techniques
implemented by the solvers.

▶ How do we know that a formula is indeed a symmetry breaker?

▶ How do we know if it is ”safe” to compose 2 or more symmetry breakers?

▶ Given a symmetry breaker, can we generate more symmetry breakers alike?

⇝ framework for understanding the symmetries of the underlying problem

Approaches:

▶ invariant theory - not clear how, not obvious

▶ group theory - maybe?

Discussion

▶ SMT solvers proof certificates could help understanding why/when the
symmetry breaking strategies interact badly with the underlying techniques
implemented by the solvers.

▶ How do we know that a formula is indeed a symmetry breaker?

▶ How do we know if it is ”safe” to compose 2 or more symmetry breakers?

▶ Given a symmetry breaker, can we generate more symmetry breakers alike?

⇝ framework for understanding the symmetries of the underlying problem

Approaches:

▶ invariant theory - not clear how, not obvious

▶ group theory - maybe?

Discussion

▶ SMT solvers proof certificates could help understanding why/when the
symmetry breaking strategies interact badly with the underlying techniques
implemented by the solvers.

▶ How do we know that a formula is indeed a symmetry breaker?

▶ How do we know if it is ”safe” to compose 2 or more symmetry breakers?

▶ Given a symmetry breaker, can we generate more symmetry breakers alike?

⇝ framework for understanding the symmetries of the underlying problem

Approaches:

▶ invariant theory - not clear how, not obvious

▶ group theory - maybe?

Discussion

▶ SMT solvers proof certificates could help understanding why/when the
symmetry breaking strategies interact badly with the underlying techniques
implemented by the solvers.

▶ How do we know that a formula is indeed a symmetry breaker?

▶ How do we know if it is ”safe” to compose 2 or more symmetry breakers?

▶ Given a symmetry breaker, can we generate more symmetry breakers alike?

⇝ framework for understanding the symmetries of the underlying problem

Approaches:

▶ invariant theory - not clear how, not obvious

▶ group theory - maybe?

Discussion

▶ SMT solvers proof certificates could help understanding why/when the
symmetry breaking strategies interact badly with the underlying techniques
implemented by the solvers.

▶ How do we know that a formula is indeed a symmetry breaker?

▶ How do we know if it is ”safe” to compose 2 or more symmetry breakers?

▶ Given a symmetry breaker, can we generate more symmetry breakers alike?

⇝ framework for understanding the symmetries of the underlying problem

Approaches:

▶ invariant theory - not clear how, not obvious

▶ group theory - maybe?

Discussion

▶ SMT solvers proof certificates could help understanding why/when the
symmetry breaking strategies interact badly with the underlying techniques
implemented by the solvers.

▶ How do we know that a formula is indeed a symmetry breaker?

▶ How do we know if it is ”safe” to compose 2 or more symmetry breakers?

▶ Given a symmetry breaker, can we generate more symmetry breakers alike?

⇝ framework for understanding the symmetries of the underlying problem

Approaches:

▶ invariant theory - not clear how, not obvious

▶ group theory - maybe?

	Problem Specification
	Case Study
	Problem Formalization
	Solution Approaches
	Experimental Results
	Discussion

