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A Benchmark Implementation Details

Two sets of experiments were conducted, each based on a different framework, namely Torch7
(Collobert et al., 2011) and Theano (Bergstra et al., 2010; Bastien et al., 2012). With the exception of
the following main differences (and some other specific differences listed below), the two sets are
quite similar:

• In our Torch7 experiments, the activations are stochastically binarized at train-time, whereas
in our Theano experiments they are deterministically binarized.

• In our Torch7 experiments, we use the shift-based AdaMax and BN variants, which are
detailed in Algorithms 2 and 3, whereas in our Theano experiments, we use vanilla BN and
ADAM .

In both sets of experiments, we obtained near state-of-the-art results with BNNs over the MNIST,
CIFAR-10 and SVHN benchmark datasets.

A.1 MLP on MNIST (Theano)

MNIST is an image classification benchmark dataset (LeCun et al., 1998). It consists of a training
set containing 60K labeled instances, and a test set containing 10K instances. Each instance is a
28 × 28 gray-scale image of a hand-written digit in {0, 1 . . . , 9}. In order for this benchmark to
remain a challenge, we did not employ any convolution, data-augmentation, unsupervised feature
generation or any other preprocessing. The MLP we trained on MNIST consists of 3 hidden layers
each containing 4096 binary units and a L2-SVM output layer; we note that L2-SVM has been shown
to perform better than Softmax on several classification benchmarks (Tang, 2013; Lee et al., 2014).
We regularize the model with Dropout (Srivastava, 2013; Srivastava et al., 2014). The square hinge
loss is minimized with the ADAM adaptive learning rate method (Kingma & Ba, 2014b). We use
an exponentially decaying global learning rate, as per Algorithm 1, and also scale the learning rates
of the weights with their initialization coefficients from (Glorot & Bengio, 2010), as suggested by
Courbariaux et al. (2015a). We use Batch Normalization with a minibatch of size 100 to speed up the
training. We follow the convention of utilizing the last 10K training set samples as a validation set for
early stopping and model selection. We report the test error rate associated with the best validation
error rate after 1000 epochs (we do not retrain on the validation set).
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Table 1: Architecture of our CIFAR-10 ConvNet. We only use “same” convolutions, as in VGG
(Simonyan & Zisserman, 2015).

CIFAR-10 ConvNet architecture

Input: 32× 32 - RGB image
3× 3 - 128 convolution layer
BatchNorm and Binarization layers
3× 3 - 128 convolution and 2× 2 max-pooling layers
BatchNorm and Binarization layers

3× 3 - 256 convolution layer
BatchNorm and Binarization layers
3× 3 - 256 convolution and 2× 2 max-pooling layers
BatchNorm and Binarization layers

3× 3 - 512 convolution layer
BatchNorm and Binarization layers
3× 3 - 512 convolution and 2× 2 max-pooling layers
BatchNorm and Binarization layers

1024 fully connected layer
BatchNorm and Binarization layers
1024 fully connected layer
BatchNorm and Binarization layers

10 fully connected layer
BatchNorm layer (no binarization)
Cost: Mean square hinge loss

A.2 MLP on MNIST (Torch7)

We use a similar architecture as in our Theano experiments, without Dropout, and with 2048 binary
units per layer instead of 4096. Additionally, we use the shift base AdaMax and BN (with a minibatch
of size 100) instead of the vanilla implementations, to reduce the number of multiplications. Likewise,
we decay the learning rate by using a 1-bit right shift every 10 epochs.

A.3 ConvNet on CIFAR-10 (Theano)

CIFAR-10 is an image classification benchmark dataset. It consists of a training set of size 50K and a
test set of size 10K, where instance are 32 × 32 color images representing airplanes, automobiles,
birds, cats, deer, dogs, frogs, horses, ships and trucks. We do not use data-augmentation, which is
known to be a game changer for this dataset (Graham, 2014). The architecture of our ConvNet is the
same architecture used by Courbariaux et al. (2015b), except of course for the additional binarization
of the activations. The architecture used by Courbariaux et al. (2015a) is itself mainly inspired by
VGG (Simonyan & Zisserman, 2015). The square hinge loss is minimized with ADAM. We use an
exponentially decaying learning rate, as we do for MNIST. We scale the learning rates of the weights
with their initialization coefficients from (Glorot & Bengio, 2010). We use Batch Normalization with
a minibatch of size 50 to speed up the training. We use the last 5000 samples of the training set as
a validation set. We report the test error rate associated with the best validation error rate after 500
training epochs (we do not retrain on the validation set).

A.4 ConvNet on CIFAR-10 (Torch7)

We use the same architecture as in our Theano experiments. We apply shift-based AdaMax and
BN (with a minibatch of size 200) instead of the vanilla implementations to reduce the number of
multiplications. Likewise, we decay the learning rate by using a 1-bit right shift every 50 epochs.

A.5 ConvNet on SVHN

SVHN is also an image classification benchmark dataset. It consists of a training set of size 604K
examples and a test set of size 26K, where instances are 32 × 32 color images representing digits
ranging from 0 to 9. In both sets of experiments, we follow the same procedure used for the CIFAR-10
experiments, with a few notable exceptions: we use half the number of units in the convolution layers,
and we train for 200 epochs instead of 500 (because SVHN is significantly larger than CIFAR-10).
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B ImageNet Experiment

B.1 The ImageNet Dataset

ImageNet is typically used as a classification task, and presently considered to be among the most
important benchmarks. It consists of a training set of size 1.2M samples and test set of size 50K.
Each instance is categorized into one of 1000 categories, which span objects, animals, scenes, and
even some abstract shapes. It is customary to report classification results for ImageNet using two
error measures: top-1 and top-5, where the top-5 error rate is the fraction of test images for which the
correct label is not among the five labels considered most probable by the model.

B.2 ImageNet results

Related work: Recently considerable efforts have been invested in compressing neural network
parameters. So far most network compression attempts considered an offline approach whereby a
full precision network trained over ImageNet was compressed using various techniques. Among the
prominent approaches that have been used are weight sharing (Chen et al., 2015), weight clipping and
quantization (Gong et al., 2014). Our ImageNet result is the most extreme quantization attempt for
this dataset where all weights are binarized. The most aggressive previous quantization of ImageNet
considered the AlexNet architecture with 4-bit weight representation for the convolutional layers and
2-bit representation for the fully connected layers (Han & Dally, 2015). Their attempts to further
compress the network resulted in drastic accuracy degradation. For example, they report that accuracy
almost completely vanishes using full binary (1-bit) quantization.

A similar approach to taking advantage of binary representations of activations to speed-up com-
putation was very recently presented by Rastegari et al. (2016), shortly after our own preliminary
technical report on the same idea was posted on Arxiv. The Xnor-Net idea reported in (Rastegari et al.,
2016) relies on a small modification to our algorithm where binary weights and inputs are multiplied
by their L1 norm. Implementation of this normalization requires many additional multiplications
by a different scaling factor for each patch in each sample; see (Rastegari et al., 2016), Section 3.2
Eq. 10 and Figure 2. These extra multiplications prevent efficient implementations of XnorNets on
known hardware designs.

Results: We report results obtained using the well-known AlexNet and GoogleNet architectures.
Results are reported in Table 2 and 3. In comparison to previous methods concerning aggressive
compression to less than 4-bit weight representations, we achieve state-of-the-art results. Note,
however, that in all our experiments with these architectures the training errors did not approach zero.
This might indicate that different architectures would be beneficial.

B.3 Implementation Details

AlexNet: Our AlexNet implementation consists of 5 convolution layers followed by 3 fully con-
nected layers (see Table 4). We optimized the negative log-liklihood loss function, used ADAM
(Kingma & Ba, 2014a) for optimization, applied batch-normalization layers (with a minibatch of size
512). Likewise, we decayed the learning rate by 0.1 every 20 epochs.

GoogleNet: Our GoogleNet implementation consists of 2 convolution layers followed by 10
inception layers, spacial-average-pooling and fully connected classifier. We additionally used 2
auxiliary classifiers. Here again, we optimized using ADAM the negative log-likelihood, used
batch-normalization layers (with a minibatch of size 64), and decayed the learning rate by 0.1 every
10 epochs.
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Table 2: Classification test error rates of AlexNet model trained on ImageNet 1000 classification task.
No unsupervised pre-training or data augmentation was used.

Data set Top-1 Top-5
Binarized activations+weights, during training and test

BNN 40.1% 66.3%
Xnor-Nets (Rastegari et al., 2016) 44.2% 69.2%

Quantize weights, during test
Deep Compression 4/2bit (conv/FC layer) (Han et al., 2015) 55.34% 77.67%
(Gysel et al., 2016) - 2bit 0.01% -%

No Quantization (standard results)
AlexNet - our implementation 56.6% 80.2%

Table 3: Classification test error rates of GoogleNet model trained on ImageNet 1000 classification
task. No unsupervised pre-training or data augmentation was used.

Data set Top-1 Top-5
Binarized activations+weights, during training and test

BNN 47.1% 68.3%
No Quantization (standard results)

GoogleNet - our implementation 71% 90.2%

Table 4: Architecture of our AlexNet.

AlexNet ConvNet architecture

Input: 32× 32 - RGB image
11× 11 - 64 convolution layer and 3× 3 max-pooling layers
BatchNorm and Binarization layers
5× 5 - 192 convolution layer and 3× 3 max-pooling layers
BatchNorm and Binarization layers
3× 3 - 384 convolution layer
BatchNorm and Binarization layers
3× 3 - 256 convolution layer
BatchNorm and Binarization layers
3× 3 - 256 convolution layer
BatchNorm and Binarization layers
4096 fully connected layer
BatchNorm and Binarization layers
4096 fully connected layer
BatchNorm and Binarization layers

1000 fully connected layer
BatchNorm layer (no binarization)
SoftMax layer (no binarization)
Cost: Negative log likelihood
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C Exploiting Filter Repetitions

When using a ConvNet architecture with binary weights, the number of unique filters is bounded
by the filter size. For example, in our implementation we use filters of size 3× 3, so the maximum
number of unique 2D filters is 29 = 512. However, this should not prevent expanding the number
of feature maps beyond this number, since the actual filter is a 3D matrix. Assuming we have M`

filters in the ` convolutional layer, we have to store a 4D weight matrix of size M` ×M`−1 × k × k.
Consequently, the number of unique filters is 2k

2M`−1 . When necessary, we apply each filter on the
map and perform the required multiply-accumulate (MAC) operations (in our case, using XNOR
and popcount operations). Since we now have binary filters, many 2D filters of size k × k repeat
themselves. By using dedicated hardware/software, we can apply only the unique 2D filters on
each feature map and sum the results to receive each 3D filter’s convolutional result. Note that an
inverse filter (i.e., [-1,1,-1] is the inverse of [1,-1,1]) can also be treated as a repetition; it is merely a
multiplication of the original filter by -1. For example, in our ConvNet architecture trained on the
CIFAR-10 benchmark, there are only 42% unique filters per layer on average. Hence we can reduce
the number of the XNOR-popcount operations by 3.
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