
Verification of Binarized Deep Neural Networks - An Overview

Mădălina Eraşcu and Andreea Postovan

West University of Timişoara, Romania

madalina.erascu@e-uvt.ro

December 7th, 2022

Outline

Motivation

Preliminaries
Properties of neural networks
Binarized Neural Networks (BNNs)

Papers [8, 9]
Encoding the BNNs

Mixed Integer Linear Program (MILP) Encoding
Integer Linear Programming (ILP) Encoding

SAT Encoding
Encoding the Properties

Paper [1]

Paper [6]

Paper [4]

Other approaches [7]

Contents

Motivation

Preliminaries
Properties of neural networks
Binarized Neural Networks (BNNs)

Papers [8, 9]
Encoding the BNNs

Mixed Integer Linear Program (MILP) Encoding
Integer Linear Programming (ILP) Encoding

SAT Encoding
Encoding the Properties

Paper [1]

Paper [6]

Paper [4]

Other approaches [7]

Motivation

I Deep learning is used on safety-critical systems, however, the main
criticism and concern is on the lack of understanding the decision process
behind the networks.

I Question: Can we trust the decisions that neural networks make?

Define the properties that the neural networks should have and
verify if they hold for the network.

Motivation

I Deep learning is used on safety-critical systems, however, the main
criticism and concern is on the lack of understanding the decision process
behind the networks.

I Question: Can we trust the decisions that neural networks make?

Define the properties that the neural networks should have and
verify if they hold for the network.

Motivation

I Deep learning is used on safety-critical systems, however, the main
criticism and concern is on the lack of understanding the decision process
behind the networks.

I Question: Can we trust the decisions that neural networks make?

Define the properties that the neural networks should have and
verify if they hold for the network.

Litarature

I Neural Networks Verification

I State-of-the-art AAAI2022: https://neural-network-verification.com
I VNN-COMP https://sites.google.com/view/vnn20/vnncomp

I Binarized Neural Networks Verification

I N. Narodytska et al. Verifying properties of binarized deep neural networks,
2018 [9]

I N. Narodytska Formal Analysis of Deep Binarized Neural Networks, 2018 [8]
I G. Amir et al. An SMT-based approach for verifyig binarized neural

networks, 2021
I K. Jia and M. Rinard. Efficient Exact Verification of Binarized Neural

Networks, 2020
I M. Lechner et al. Quantization-aware Interval Bound Propagation for

Training Certifiably Robust Quantized, 2022 Neural Networks
I It seems BNN (verification) is on ascending trend (cf. Google Scholar):

2016 - 40 entries, 2017 - 127, 2018 - 376, 2019 - 529, 2020 - 676, 2021 -
756, 2022 - 737

https://neural-network-verification.com
https://sites.google.com/view/vnn20/vnncomp

Litarature

I Neural Networks Verification

I State-of-the-art AAAI2022: https://neural-network-verification.com
I VNN-COMP https://sites.google.com/view/vnn20/vnncomp

I Binarized Neural Networks Verification

I N. Narodytska et al. Verifying properties of binarized deep neural networks,
2018 [9]

I N. Narodytska Formal Analysis of Deep Binarized Neural Networks, 2018 [8]
I G. Amir et al. An SMT-based approach for verifyig binarized neural

networks, 2021
I K. Jia and M. Rinard. Efficient Exact Verification of Binarized Neural

Networks, 2020
I M. Lechner et al. Quantization-aware Interval Bound Propagation for

Training Certifiably Robust Quantized, 2022 Neural Networks
I It seems BNN (verification) is on ascending trend (cf. Google Scholar):

2016 - 40 entries, 2017 - 127, 2018 - 376, 2019 - 529, 2020 - 676, 2021 -
756, 2022 - 737

https://neural-network-verification.com
https://sites.google.com/view/vnn20/vnncomp

Litarature

I Neural Networks Verification
I State-of-the-art AAAI2022: https://neural-network-verification.com

I VNN-COMP https://sites.google.com/view/vnn20/vnncomp

I Binarized Neural Networks Verification

I N. Narodytska et al. Verifying properties of binarized deep neural networks,
2018 [9]

I N. Narodytska Formal Analysis of Deep Binarized Neural Networks, 2018 [8]
I G. Amir et al. An SMT-based approach for verifyig binarized neural

networks, 2021
I K. Jia and M. Rinard. Efficient Exact Verification of Binarized Neural

Networks, 2020
I M. Lechner et al. Quantization-aware Interval Bound Propagation for

Training Certifiably Robust Quantized, 2022 Neural Networks
I It seems BNN (verification) is on ascending trend (cf. Google Scholar):

2016 - 40 entries, 2017 - 127, 2018 - 376, 2019 - 529, 2020 - 676, 2021 -
756, 2022 - 737

https://neural-network-verification.com
https://sites.google.com/view/vnn20/vnncomp

Litarature

I Neural Networks Verification
I State-of-the-art AAAI2022: https://neural-network-verification.com
I VNN-COMP https://sites.google.com/view/vnn20/vnncomp

I Binarized Neural Networks Verification

I N. Narodytska et al. Verifying properties of binarized deep neural networks,
2018 [9]

I N. Narodytska Formal Analysis of Deep Binarized Neural Networks, 2018 [8]
I G. Amir et al. An SMT-based approach for verifyig binarized neural

networks, 2021
I K. Jia and M. Rinard. Efficient Exact Verification of Binarized Neural

Networks, 2020
I M. Lechner et al. Quantization-aware Interval Bound Propagation for

Training Certifiably Robust Quantized, 2022 Neural Networks
I It seems BNN (verification) is on ascending trend (cf. Google Scholar):

2016 - 40 entries, 2017 - 127, 2018 - 376, 2019 - 529, 2020 - 676, 2021 -
756, 2022 - 737

https://neural-network-verification.com
https://sites.google.com/view/vnn20/vnncomp

Litarature

I Neural Networks Verification
I State-of-the-art AAAI2022: https://neural-network-verification.com
I VNN-COMP https://sites.google.com/view/vnn20/vnncomp

I Binarized Neural Networks Verification
I N. Narodytska et al. Verifying properties of binarized deep neural networks,

2018 [9]

I N. Narodytska Formal Analysis of Deep Binarized Neural Networks, 2018 [8]
I G. Amir et al. An SMT-based approach for verifyig binarized neural

networks, 2021
I K. Jia and M. Rinard. Efficient Exact Verification of Binarized Neural

Networks, 2020
I M. Lechner et al. Quantization-aware Interval Bound Propagation for

Training Certifiably Robust Quantized, 2022 Neural Networks
I It seems BNN (verification) is on ascending trend (cf. Google Scholar):

2016 - 40 entries, 2017 - 127, 2018 - 376, 2019 - 529, 2020 - 676, 2021 -
756, 2022 - 737

https://neural-network-verification.com
https://sites.google.com/view/vnn20/vnncomp

Litarature

I Neural Networks Verification
I State-of-the-art AAAI2022: https://neural-network-verification.com
I VNN-COMP https://sites.google.com/view/vnn20/vnncomp

I Binarized Neural Networks Verification
I N. Narodytska et al. Verifying properties of binarized deep neural networks,

2018 [9]
I N. Narodytska Formal Analysis of Deep Binarized Neural Networks, 2018 [8]

I G. Amir et al. An SMT-based approach for verifyig binarized neural
networks, 2021

I K. Jia and M. Rinard. Efficient Exact Verification of Binarized Neural
Networks, 2020

I M. Lechner et al. Quantization-aware Interval Bound Propagation for
Training Certifiably Robust Quantized, 2022 Neural Networks

I It seems BNN (verification) is on ascending trend (cf. Google Scholar):
2016 - 40 entries, 2017 - 127, 2018 - 376, 2019 - 529, 2020 - 676, 2021 -
756, 2022 - 737

https://neural-network-verification.com
https://sites.google.com/view/vnn20/vnncomp

Litarature

I Neural Networks Verification
I State-of-the-art AAAI2022: https://neural-network-verification.com
I VNN-COMP https://sites.google.com/view/vnn20/vnncomp

I Binarized Neural Networks Verification
I N. Narodytska et al. Verifying properties of binarized deep neural networks,

2018 [9]
I N. Narodytska Formal Analysis of Deep Binarized Neural Networks, 2018 [8]
I G. Amir et al. An SMT-based approach for verifyig binarized neural

networks, 2021

I K. Jia and M. Rinard. Efficient Exact Verification of Binarized Neural
Networks, 2020

I M. Lechner et al. Quantization-aware Interval Bound Propagation for
Training Certifiably Robust Quantized, 2022 Neural Networks

I It seems BNN (verification) is on ascending trend (cf. Google Scholar):
2016 - 40 entries, 2017 - 127, 2018 - 376, 2019 - 529, 2020 - 676, 2021 -
756, 2022 - 737

https://neural-network-verification.com
https://sites.google.com/view/vnn20/vnncomp

Litarature

I Neural Networks Verification
I State-of-the-art AAAI2022: https://neural-network-verification.com
I VNN-COMP https://sites.google.com/view/vnn20/vnncomp

I Binarized Neural Networks Verification
I N. Narodytska et al. Verifying properties of binarized deep neural networks,

2018 [9]
I N. Narodytska Formal Analysis of Deep Binarized Neural Networks, 2018 [8]
I G. Amir et al. An SMT-based approach for verifyig binarized neural

networks, 2021
I K. Jia and M. Rinard. Efficient Exact Verification of Binarized Neural

Networks, 2020

I M. Lechner et al. Quantization-aware Interval Bound Propagation for
Training Certifiably Robust Quantized, 2022 Neural Networks

I It seems BNN (verification) is on ascending trend (cf. Google Scholar):
2016 - 40 entries, 2017 - 127, 2018 - 376, 2019 - 529, 2020 - 676, 2021 -
756, 2022 - 737

https://neural-network-verification.com
https://sites.google.com/view/vnn20/vnncomp

Litarature

I Neural Networks Verification
I State-of-the-art AAAI2022: https://neural-network-verification.com
I VNN-COMP https://sites.google.com/view/vnn20/vnncomp

I Binarized Neural Networks Verification
I N. Narodytska et al. Verifying properties of binarized deep neural networks,

2018 [9]
I N. Narodytska Formal Analysis of Deep Binarized Neural Networks, 2018 [8]
I G. Amir et al. An SMT-based approach for verifyig binarized neural

networks, 2021
I K. Jia and M. Rinard. Efficient Exact Verification of Binarized Neural

Networks, 2020
I M. Lechner et al. Quantization-aware Interval Bound Propagation for

Training Certifiably Robust Quantized, 2022 Neural Networks

I It seems BNN (verification) is on ascending trend (cf. Google Scholar):
2016 - 40 entries, 2017 - 127, 2018 - 376, 2019 - 529, 2020 - 676, 2021 -
756, 2022 - 737

https://neural-network-verification.com
https://sites.google.com/view/vnn20/vnncomp

Litarature

I Neural Networks Verification
I State-of-the-art AAAI2022: https://neural-network-verification.com
I VNN-COMP https://sites.google.com/view/vnn20/vnncomp

I Binarized Neural Networks Verification
I N. Narodytska et al. Verifying properties of binarized deep neural networks,

2018 [9]
I N. Narodytska Formal Analysis of Deep Binarized Neural Networks, 2018 [8]
I G. Amir et al. An SMT-based approach for verifyig binarized neural

networks, 2021
I K. Jia and M. Rinard. Efficient Exact Verification of Binarized Neural

Networks, 2020
I M. Lechner et al. Quantization-aware Interval Bound Propagation for

Training Certifiably Robust Quantized, 2022 Neural Networks
I It seems BNN (verification) is on ascending trend (cf. Google Scholar):

2016 - 40 entries, 2017 - 127, 2018 - 376, 2019 - 529, 2020 - 676, 2021 -
756, 2022 - 737

https://neural-network-verification.com
https://sites.google.com/view/vnn20/vnncomp

Why Verification/Analysis of Deep Neural Networks (DNNs) is important?

I Is there a way to analyze deep neural networks?

I Can we explain their decisions?

I How robust are these networks to perturbations of inputs?

I How critical is the choice of one architecture over an other?

Verification problem: encode the (exact representation of the) network and the
property we aim to verify as a formal statement, using, e.g. ILP, SMT or SAT.

Why Verification/Analysis of Deep Neural Networks (DNNs) is important?

I Is there a way to analyze deep neural networks?

I Can we explain their decisions?

I How robust are these networks to perturbations of inputs?

I How critical is the choice of one architecture over an other?

Verification problem: encode the (exact representation of the) network and the
property we aim to verify as a formal statement, using, e.g. ILP, SMT or SAT.

Why Verification/Analysis of Deep Neural Networks (DNNs) is important?

I Is there a way to analyze deep neural networks?

I Can we explain their decisions?

I How robust are these networks to perturbations of inputs?

I How critical is the choice of one architecture over an other?

Verification problem: encode the (exact representation of the) network and the
property we aim to verify as a formal statement, using, e.g. ILP, SMT or SAT.

Why Verification/Analysis of Deep Neural Networks (DNNs) is important?

I Is there a way to analyze deep neural networks?

I Can we explain their decisions?

I How robust are these networks to perturbations of inputs?

I How critical is the choice of one architecture over an other?

Verification problem: encode the (exact representation of the) network and the
property we aim to verify as a formal statement, using, e.g. ILP, SMT or SAT.

Why Verification/Analysis of Deep Neural Networks (DNNs) is important?

I Is there a way to analyze deep neural networks?

I Can we explain their decisions?

I How robust are these networks to perturbations of inputs?

I How critical is the choice of one architecture over an other?

Verification problem: encode the (exact representation of the) network and the
property we aim to verify as a formal statement, using, e.g. ILP, SMT or SAT.

Methods for the Verification of DNNs

Techniques for verification methods for DNNs can not be used for BNNs [3]

Why Binarized Neural Networks (BNNs)?

Features useful in resource constrained environments (embedded devices or
mobile phones):

I memory efficient (weights and activations are primarily binary)

I computationally efficient (activations are binary algorithms for fast
binary matrix multiplication.

Weights and activations are represented using 1 bit (quantization).
Performance of BNNs is comparable to that of DNNs (real-value parameters)
[2].

Why Binarized Neural Networks (BNNs)?

Features useful in resource constrained environments (embedded devices or
mobile phones):

I memory efficient (weights and activations are primarily binary)

I computationally efficient (activations are binary algorithms for fast
binary matrix multiplication.

Weights and activations are represented using 1 bit (quantization).
Performance of BNNs is comparable to that of DNNs (real-value parameters)
[2].

Why Binarized Neural Networks (BNNs)?

Features useful in resource constrained environments (embedded devices or
mobile phones):

I memory efficient (weights and activations are primarily binary)

I computationally efficient (activations are binary algorithms for fast
binary matrix multiplication.

Weights and activations are represented using 1 bit (quantization).
Performance of BNNs is comparable to that of DNNs (real-value parameters)
[2].

Why Binarized Neural Networks (BNNs)?

Features useful in resource constrained environments (embedded devices or
mobile phones):

I memory efficient (weights and activations are primarily binary)

I computationally efficient (activations are binary algorithms for fast
binary matrix multiplication.

Weights and activations are represented using 1 bit (quantization).
Performance of BNNs is comparable to that of DNNs (real-value parameters)
[2].

Why Binarized Neural Networks (BNNs)?

Features useful in resource constrained environments (embedded devices or
mobile phones):

I memory efficient (weights and activations are primarily binary)

I computationally efficient (activations are binary algorithms for fast
binary matrix multiplication.

Weights and activations are represented using 1 bit (quantization).

Performance of BNNs is comparable to that of DNNs (real-value parameters)
[2].

Why Binarized Neural Networks (BNNs)?

Features useful in resource constrained environments (embedded devices or
mobile phones):

I memory efficient (weights and activations are primarily binary)

I computationally efficient (activations are binary algorithms for fast
binary matrix multiplication.

Weights and activations are represented using 1 bit (quantization).
Performance of BNNs is comparable to that of DNNs (real-value parameters)
[2].

Contents

Motivation

Preliminaries
Properties of neural networks
Binarized Neural Networks (BNNs)

Papers [8, 9]
Encoding the BNNs

Mixed Integer Linear Program (MILP) Encoding
Integer Linear Programming (ILP) Encoding

SAT Encoding
Encoding the Properties

Paper [1]

Paper [6]

Paper [4]

Other approaches [7]

Notations

I [s] = {1, 2, ..., s}
I v = (v1, ..., vm), v ∈ R

I ‖v‖p, p ≥ 1 is the Lp-norm v, ‖v‖p = p

√
m∑
i=1

|vi |p

I Formula A is satisfiable/unsatisfiable ...
I Image classification problem: we are given (1) a set of training images

drawn from an unknown distribution ν over X = Zn, where n is the size of
individual images, (2) a label for each image L : Zn → [s].

I Training: given a labeled training set, learn a neural network classifier that
can be used as inference engine.

I During the inference the network is fixed.

Notations

I [s] = {1, 2, ..., s}
I v = (v1, ..., vm), v ∈ R

I ‖v‖p, p ≥ 1 is the Lp-norm v, ‖v‖p = p

√
m∑
i=1

|vi |p

I Formula A is satisfiable/unsatisfiable ...

I Image classification problem: we are given (1) a set of training images
drawn from an unknown distribution ν over X = Zn, where n is the size of
individual images, (2) a label for each image L : Zn → [s].

I Training: given a labeled training set, learn a neural network classifier that
can be used as inference engine.

I During the inference the network is fixed.

Notations

I [s] = {1, 2, ..., s}
I v = (v1, ..., vm), v ∈ R

I ‖v‖p, p ≥ 1 is the Lp-norm v, ‖v‖p = p

√
m∑
i=1

|vi |p

I Formula A is satisfiable/unsatisfiable ...
I Image classification problem: we are given (1) a set of training images

drawn from an unknown distribution ν over X = Zn, where n is the size of
individual images, (2) a label for each image L : Zn → [s].

I Training: given a labeled training set, learn a neural network classifier that
can be used as inference engine.

I During the inference the network is fixed.

Notations

I [s] = {1, 2, ..., s}
I v = (v1, ..., vm), v ∈ R

I ‖v‖p, p ≥ 1 is the Lp-norm v, ‖v‖p = p

√
m∑
i=1

|vi |p

I Formula A is satisfiable/unsatisfiable ...
I Image classification problem: we are given (1) a set of training images

drawn from an unknown distribution ν over X = Zn, where n is the size of
individual images, (2) a label for each image L : Zn → [s].
I Training: given a labeled training set, learn a neural network classifier that

can be used as inference engine.
I During the inference the network is fixed.

Contents

Motivation

Preliminaries
Properties of neural networks
Binarized Neural Networks (BNNs)

Papers [8, 9]
Encoding the BNNs

Mixed Integer Linear Program (MILP) Encoding
Integer Linear Programming (ILP) Encoding

SAT Encoding
Encoding the Properties

Paper [1]

Paper [6]

Paper [4]

Other approaches [7]

Properties of neural networks

Let F be a general feedforward neural, F (x) be the output of F on input x and
lx = L(x) be the ground truth label of x.

Properties:

1. Robustness: small perturbations on inputs do not affect the output.

2. Invertibility: explore a set of inputs that map to a given output (example:
what the inputs of the network are, if exist, that map to a given output).

3. Network equivalence: two networks F1 and F2 are equivalent if they
generate same outputs on all inputs drawn from the domain X .

Properties of neural networks

Let F be a general feedforward neural, F (x) be the output of F on input x and
lx = L(x) be the ground truth label of x.
Properties:

1. Robustness: small perturbations on inputs do not affect the output.
I global robustness: for any valid input, there is no small perturbation that

can change the decision of the network on this input.

Definition (Global Robustness)
A feedforward neural network F is globally-robust if for any input x, x ∈ X and τ ,
‖τ‖∞ ≤ ε we have that F (x + τ) = lx.

I local robustness: is defined for a single input x .

Definition (Local Robustness)
A feedforward neural network F is locally-robust for an input x, x ∈ X , if there does
not exist τ , ‖τ‖∞ ≤ ε such that F (x + τ) 6= lx .

2. Invertibility: explore a set of inputs that map to a given output (example:
what the inputs of the network are, if exist, that map to a given output).

3. Network equivalence: two networks F1 and F2 are equivalent if they
generate same outputs on all inputs drawn from the domain X .

Properties of neural networks

Let F be a general feedforward neural, F (x) be the output of F on input x and
lx = L(x) be the ground truth label of x.
Properties:

1. Robustness: small perturbations on inputs do not affect the output.

2. Invertibility: explore a set of inputs that map to a given output (example:
what the inputs of the network are, if exist, that map to a given output).

Definition (Local Invertibility)

A feedforward neural network F is locally invertible for an output s if there
exists x, x ∈ C(X), such that F (x) = s, where C(X) denotes the constrained
domain of inputs.

Related problem: how to enumerate multiple, preferably diverse by some
measure, inputs of the network that map to a given output.

3. Network equivalence: two networks F1 and F2 are equivalent if they
generate same outputs on all inputs drawn from the domain X .

Properties of neural networks

Let F be a general feedforward neural, F (x) be the output of F on input x and
lx = L(x) be the ground truth label of x.
Properties:

1. Robustness: small perturbations on inputs do not affect the output.

2. Invertibility: explore a set of inputs that map to a given output (example:
what the inputs of the network are, if exist, that map to a given output).

3. Network equivalence: two networks F1 and F2 are equivalent if they
generate same outputs on all inputs drawn from the domain X .

Definition (Network Equivalence)

Two feedforward neural networks F1 and F2 are equivalent if for all x ∈ X ,
F1(x) = F2(x).

Application: network alteration.

Contents

Motivation

Preliminaries
Properties of neural networks
Binarized Neural Networks (BNNs)

Papers [8, 9]
Encoding the BNNs

Mixed Integer Linear Program (MILP) Encoding
Integer Linear Programming (ILP) Encoding

SAT Encoding
Encoding the Properties

Paper [1]

Paper [6]

Paper [4]

Other approaches [7]

Binarized Neural Networks (BNNs) [2, 8, 9, 1]

Definition (Binarized Neural Network)

A binarized neural network BNN : {−1, 1}n → [s] is a feedforward network that
is composed of d blocks, BLK1, ..., BLKd−1,O. Formally, given an input x,
BNN(x) = O(BLKd−1, ...(BLK1(x)))

Schematic view of a binarized neural network

Structure of internal and outputs
blocks, which stacked together form a BNN. Ak and bk – parameters of the

LIN layer; αki , γki , µki , σki – parameters of the BN layer. µ and σ correspond to
mean and standard deviation computed in the training phase. The BIN layer is

parameter free.

Contents

Motivation

Preliminaries
Properties of neural networks
Binarized Neural Networks (BNNs)

Papers [8, 9]
Encoding the BNNs

Mixed Integer Linear Program (MILP) Encoding
Integer Linear Programming (ILP) Encoding

SAT Encoding
Encoding the Properties

Paper [1]

Paper [6]

Paper [4]

Other approaches [7]

Observations

I There is no public repository associated to the papers.

I Few details in the papers about the architecture of the underlying
networks so we could not reproduce their results.

I They claim they use binary values only but from the encoding one could
observe real values for some layers in the blocks encoding (see next slides).

Contents

Motivation

Preliminaries
Properties of neural networks
Binarized Neural Networks (BNNs)

Papers [8, 9]
Encoding the BNNs

Mixed Integer Linear Program (MILP) Encoding
Integer Linear Programming (ILP) Encoding

SAT Encoding
Encoding the Properties

Paper [1]

Paper [6]

Paper [4]

Other approaches [7]

Encodings of BNNs

I BNN encoding into Boolean formulae.

I The encoding of the BNN is a conjunction of encodings of its blocks.

I BINBLKk(xk , xk+1) a Boolean function that encodes the kth block (BLKk)
with an input xk and an output xk+1.

I BINO(xd , o) be a Boolean function that encodes O that takes an input xd
and outputs o.

I The entire BNN on input x can be encoded as a Boolean formula, with x1

(first layer) = x (input):(
d−1∧
k=1

BINBLKk(xk , xk+1)

)
∧ BINO(xd , o)

I Encodings: MILP ILP SAT.

Mixed Integer Linear Program (MILP) Encoding

I Encoding of BLKk : encode each layer in BLKk to MILP separately. Let ai
be the i-th row of the matrix Ak , xk ∈ {−1, 1}nk denote the input to
BLKk .

I Linear Transformation. Transformation for fully connected layer (suitable
for convolutions also as they are linear operations). We have:

yi = 〈ai , xk〉+ bi , i = 1, ..., nk+1 (1)

where y = (y1, ..., ynk+1) ∈ Rnk+1 .

I Batch Normalization: takes the output of the linear layer as an input. By
definition, we have:

zi = αki

(
yi − µki

σki

)
+ γki , i = 1, nk+1

σki zi = αki yi − αkiµki + σki γki (2)

I Binarization. For the BIN operation, which implements a sign function, we
need to deal with conditional constraints.

zi ≥ 0⇒ vi = 1 (3)

zi < 0⇒ vi = −1 i = 1, nk+1 (4)

Mixed Integer Linear Program Encoding (cont’d)

I Encoding of O: wi = 〈ai , xd〉+ bi , i = 1, .., s, where ai represents the i-th
column in Ad and w = (w1, ...,ws). To encode ARGMAX, an ordering
relation between wi ’s must be imposed:

wi ≥ wj ⇐⇒ dij = 1 dij newly introduced vars
s∑

j=1

dij = s =⇒ o = i i , j = 1, s (5)

Mixed Integer Linear Program Encoding (cont’d)

I Encoding of O: wi = 〈ai , xd〉+ bi , i = 1, .., s, where ai represents the i-th
column in Ad and w = (w1, ...,ws). To encode ARGMAX, an ordering
relation between wi ’s must be imposed:

wi ≥ wj ⇐⇒ dij = 1 dij newly introduced vars
s∑

j=1

dij = s =⇒ o = i i , j = 1, s (5)

Example

Consider an internal block with two inputs and one output. Suppose we have
the following parameters: Ak = [1,−1], bk = [−0.5], αk = [0.12], µk = [−0.1],
σk = [2], δk = [0.1].

1. apply the linear transformation: y1 = xk1 − xk2 − 0.5

2. apply batch normalization: 2z1 = 0.12y1 + (−0.12) ∗ (−0.1) + 2 ∗ 0.1

3. apply binarization: z1 ≥ 0 =⇒ v1 = 1 ∧ z1 < 0 =⇒ v1 = −1. (xk+1 = v1).

Mixed Integer Linear Program Encoding (cont’d)

I Encoding of O: wi = 〈ai , xd〉+ bi , i = 1, .., s, where ai represents the i-th
column in Ad and w = (w1, ...,ws). To encode ARGMAX, an ordering
relation between wi ’s must be imposed:

wi ≥ wj ⇐⇒ dij = 1 dij newly introduced vars
s∑

j=1

dij = s =⇒ o = i i , j = 1, s (5)

Example

Consider an output block with two inputs and two outputs. We have the
following parameters for this block Ad = [1,−1;−1, 1] and b = [−0.5, 0.2].

1. encoding of the linear transformation

w1 = xd1 − xd2 − 0.5 w2 = −xd1 + xd2 + 0.2

2. Two outputs 4 Boolean variables dij , i , j = 1, 2; d11 = d22 = 1
consider only non-diagonal variables.

w1 ≥ w2 ⇐⇒ d12 = 1 ∧ w2 < w1 ⇐⇒ d21 = 1

3. we compute the output o of the neural network as:

d11 + d12 = 2 =⇒ o = 1 ∧ d21 + d22 = 2 =⇒ o = 2

Integer Linear Programming (ILP) Encoding

ILP encoding is smaller than the MILP one.

I Encoding of BLKk : z and y are functional variables of xk . We can
substitute them in (3) and (4) based on (1) and (2) respectively:

αki

σki

(〈ai , xk〉+ bi)−
αki

σki

µki + γki =⇒ vi = 1

I Linear and batch normalization:
I Case αki > 0, we have:

〈ai , xk 〉 ≥ −
σki
αki

γki +µki −bi =⇒ x
′
i = 1(see p. 6618 right column, bottom)

Consider Ci =

⌈
−
σki
αki

γki + µki − bi

⌉
. We encode (3) and (4):

〈ai , xk 〉 ≥ Ci ⇒ vi = 1

〈ai , xk 〉 < Ci ⇒ vi = −1 i = 1, nk+1

I Case αki < 0. Same as above but Ci =

⌊
−
σki
αki

γki + µki − bi

⌋
I Case αki = 0, we have: γki =⇒ vi = 1

Integer Linear Programming (ILP) Encoding (cont’d)

I Encoding of O: introduce the Boolean variables dij avoiding the
intermediate variables wi

〈ai , xd〉+ bi ≥ 〈aj , xd〉+ bj ⇐⇒ dij = 1, i , j = 1, s

⇐⇒
〈ai − aj , xd〉 ≥ dbj − bie ⇐⇒ dij = 1

where ai and aj denote the ith and jth rows in the matrix Ad .

Further, constraints (5) can be used.

Integer Linear Programming (ILP) Encoding (cont’d)

I Encoding of O: introduce the Boolean variables dij avoiding the
intermediate variables wi

〈ai , xd〉+ bi ≥ 〈aj , xd〉+ bj ⇐⇒ dij = 1, i , j = 1, s

⇐⇒
〈ai − aj , xd〉 ≥ dbj − bie ⇐⇒ dij = 1

where ai and aj denote the ith and jth rows in the matrix Ad .

Further, constraints (5) can be used.

Example

Recall the internal block with two inputs and one output: Ak = [1,−1],
bk = [−0.5], αk = [0.12], µk = [−0.1], σk = [2], δk = [0.1]. We have:

xk1 − xk2 ≥
⌈
−2

0.1
∗ 0.1− 0.1− (−0.5)

⌉
= −1⇒ v1 = 1

xk1 − xk2 <

⌈
−2

0.1
∗ 0.1− 0.1− (−0.5)

⌉
= −1⇒ v1 = −1

Integer Linear Programming (ILP) Encoding (cont’d)

I Encoding of O: introduce the Boolean variables dij avoiding the
intermediate variables wi

〈ai , xd〉+ bi ≥ 〈aj , xd〉+ bj ⇐⇒ dij = 1, i , j = 1, s

⇐⇒
〈ai − aj , xd〉 ≥ dbj − bie ⇐⇒ dij = 1

where ai and aj denote the ith and jth rows in the matrix Ad .

Further, constraints (5) can be used.

Example

Recall the output block with two inputs and two outputs: Ad = [1,−1;−1, 1]
and b = [−0.5, 0.2]. We have

xd1−xd2−0.5 ≥ −xd1 +xd2 +0.2 ⇐⇒ d12 =1 equiv. to xd1−xd2 ≥
⌈

0.7

2

⌉
⇐⇒ d12 =1

xd2−xd1 +0.2 ≥ −xd2 +xd1−0.5 ⇐⇒ d21 =1 equiv. to xd1−xd2 ≤
⌈

0.7

2

⌉
⇐⇒ d21 =1

Contents

Motivation

Preliminaries
Properties of neural networks
Binarized Neural Networks (BNNs)

Papers [8, 9]
Encoding the BNNs

Mixed Integer Linear Program (MILP) Encoding
Integer Linear Programming (ILP) Encoding

SAT Encoding
Encoding the Properties

Paper [1]

Paper [6]

Paper [4]

Other approaches [7]

SAT Encoding

Naive approach: encode the BLK and O blocks into CNF is to directly
translate their ILP encoding defined above into SAT.

Drawback: inefficient – the resulting encoding will be very large.
Solution: exploit the properties of BNNs.

Sequential counters for encoding cardinality constraints

Consider a cardinality constraint:
∑m

i=1 li ≥ C , where li ∈ {0, 1} is a Boolean
variable and C is a constant. This can be compiled into CNF using sequential
counters SQ(l ,C), l = (l1, ..., lm).
Then SQ(l ,C) is equivalent to:

(l1 ⇔ r(1,1)) ∧ (¬r(1,j), j = 2,C)

r(i,1) ⇔ li ∨ r(i−1,1) ∧

r(i,j) ⇔ li ∧ r(i−1,j−1) ∨ r(i−1,j), j = 2,C

where i = 2,m, r(j,p) = T ⇐⇒
∑j

i=1 li ≥ p

SAT Encoding

Naive approach: encode the BLK and O blocks into CNF is to directly
translate their ILP encoding defined above into SAT.
Drawback: inefficient – the resulting encoding will be very large.

Solution: exploit the properties of BNNs.

Sequential counters for encoding cardinality constraints

Consider a cardinality constraint:
∑m

i=1 li ≥ C , where li ∈ {0, 1} is a Boolean
variable and C is a constant. This can be compiled into CNF using sequential
counters SQ(l ,C), l = (l1, ..., lm).
Then SQ(l ,C) is equivalent to:

(l1 ⇔ r(1,1)) ∧ (¬r(1,j), j = 2,C)

r(i,1) ⇔ li ∨ r(i−1,1) ∧

r(i,j) ⇔ li ∧ r(i−1,j−1) ∨ r(i−1,j), j = 2,C

where i = 2,m, r(j,p) = T ⇐⇒
∑j

i=1 li ≥ p

SAT Encoding

Naive approach: encode the BLK and O blocks into CNF is to directly
translate their ILP encoding defined above into SAT.
Drawback: inefficient – the resulting encoding will be very large.
Solution: exploit the properties of BNNs.

Sequential counters for encoding cardinality constraints

Consider a cardinality constraint:
∑m

i=1 li ≥ C , where li ∈ {0, 1} is a Boolean
variable and C is a constant. This can be compiled into CNF using sequential
counters SQ(l ,C), l = (l1, ..., lm).
Then SQ(l ,C) is equivalent to:

(l1 ⇔ r(1,1)) ∧ (¬r(1,j), j = 2,C)

r(i,1) ⇔ li ∨ r(i−1,1) ∧

r(i,j) ⇔ li ∧ r(i−1,j−1) ∨ r(i−1,j), j = 2,C

where i = 2,m, r(j,p) = T ⇐⇒
∑j

i=1 li ≥ p

SAT Encoding

Naive approach: encode the BLK and O blocks into CNF is to directly
translate their ILP encoding defined above into SAT.
Drawback: inefficient – the resulting encoding will be very large.
Solution: exploit the properties of BNNs.

Sequential counters for encoding cardinality constraints

Consider a cardinality constraint:
∑m

i=1 li ≥ C , where li ∈ {0, 1} is a Boolean
variable and C is a constant. This can be compiled into CNF using sequential
counters SQ(l ,C), l = (l1, ..., lm).
Then SQ(l ,C) is equivalent to:

(l1 ⇔ r(1,1)) ∧ (¬r(1,j), j = 2,C)

r(i,1) ⇔ li ∨ r(i−1,1) ∧

r(i,j) ⇔ li ∧ r(i−1,j−1) ∨ r(i−1,j), j = 2,C

where i = 2,m, r(j,p) = T ⇐⇒
∑j

i=1 li ≥ p

SAT Encoding

Naive approach: encode the BLK and O blocks into CNF is to directly
translate their ILP encoding defined above into SAT.
Drawback: inefficient – the resulting encoding will be very large.
Solution: exploit the properties of BNNs.

Sequential counters for encoding cardinality constraints

Consider a cardinality constraint:
∑m

i=1 li ≥ C , where li ∈ {0, 1} is a Boolean
variable and C is a constant. This can be compiled into CNF using sequential
counters SQ(l ,C), l = (l1, ..., lm).

Then SQ(l ,C) is equivalent to:

(l1 ⇔ r(1,1)) ∧ (¬r(1,j), j = 2,C)

r(i,1) ⇔ li ∨ r(i−1,1) ∧

r(i,j) ⇔ li ∧ r(i−1,j−1) ∨ r(i−1,j), j = 2,C

where i = 2,m, r(j,p) = T ⇐⇒
∑j

i=1 li ≥ p

SAT Encoding

Naive approach: encode the BLK and O blocks into CNF is to directly
translate their ILP encoding defined above into SAT.
Drawback: inefficient – the resulting encoding will be very large.
Solution: exploit the properties of BNNs.

Sequential counters for encoding cardinality constraints

Consider a cardinality constraint:
∑m

i=1 li ≥ C , where li ∈ {0, 1} is a Boolean
variable and C is a constant. This can be compiled into CNF using sequential
counters SQ(l ,C), l = (l1, ..., lm).
Then SQ(l ,C) is equivalent to:

(l1 ⇔ r(1,1)) ∧ (¬r(1,j), j = 2,C)

r(i,1) ⇔ li ∨ r(i−1,1) ∧

r(i,j) ⇔ li ∧ r(i−1,j−1) ∨ r(i−1,j), j = 2,C

where i = 2,m, r(j,p) = T ⇐⇒
∑j

i=1 li ≥ p

SAT Encoding (cont’d)

I Encoding of BLKk :

〈ai , xk〉 ≥ Ci ⇐⇒
nk∑
j=1

aijxkj ≥ Ci ⇐⇒

Variable replacement: xkj ∈ {0, 1} x
(b)
kj
∈ {0, 1} with xkj = 2x

(b)
kj
− 1. We have:

nk∑
j=1

aij(2x
(b)
kj
− 1) ≥ Ci ⇒ vi = 1 ⇐⇒ i = 1, nk+1

Denote: a+
i = {j |aij = 1} and a−i = {j |aij = −1}. We have:∑

j∈a+
i

x
(b)
kj
−
∑
j∈a−i

x
(b)
kj
≥

⌈
Ci

2
+

nk∑
j=1

aij
2

⌉
⇐⇒

∑
j∈a+

i

x
(b)
kj
−
∑
j∈a−i

(1− x
(b)
kj

) ≥ C ′i ⇐⇒

∑
j∈a+

i

x
(b)
kj
−
∑
j∈a−i

x
(b)
kj
≥ C ′i + |a−i |. Hence

nk∑
j=1

lkj ≥ Di ⇒ v
(b)
i = 1, i =1, nk+1

Further we have:

nk+1∧
i=1

SQ(l ,Di) ∧
nk+1∧
i=1

(
ri(nk ,Di) ⇐⇒ v

(b)
i

)
Similarly for

〈ai , xk〉 < Ci ⇒ vi = −1 i = 1, nk+1

SAT Encoding (cont’d)

I Encoding of O:

〈ai , xd〉+ bi ≥ 〈aj , xd〉+ bj ⇐⇒ 〈ai − aj , xd〉 ≥ dbj − bie ⇐⇒
⇐⇒

〈ai , xk〉 ≥ Ci ⇐⇒
nk∑
j=1

aijxkj ≥ Ci ⇐⇒

Variable replacement: xkj ∈ {0, 1} x
(b)
kj
∈ {0, 1} with xkj = 2x

(b)
kj
− 1. We have:

nk∑
j=1

aij(2x
(b)
kj
− 1) ≥ Ci ⇒ vi = 1 ⇐⇒ i = 1, nk+1

Denote: a+
i = {j |aij = 1} and a−i = {j |aij = −1}. We have:∑

j∈a+
i

x
(b)
kj
−
∑
j∈a−i

x
(b)
kj
≥

⌈
Ci

2
+

nk∑
j=1

aij
2

⌉
⇐⇒

∑
j∈a+

i

x
(b)
kj
−
∑
j∈a−i

(1− x
(b)
kj

) ≥ C ′i ⇐⇒

∑
j∈a+

i

x
(b)
kj
−
∑
j∈a−i

x
(b)
kj
≥ C ′i + |a−i |. Hence

nk∑
j=1

lkj ≥ Di ⇒ v
(b)
i = 1, i =1, nk+1

Further we have:

nk+1∧
i=1

SQ(l ,Di) ∧
nk+1∧
i=1

(
ri(nk ,Di) ⇐⇒ v

(b)
i

)
I Similarly for

SAT Encoding (cont’d)

Example

Recall the internal block with two inputs and one output: Ak = [1,−1],
bk = [−0.5], αk = [0.12], µk = [−0.1], σk = [2], δk = [0.1]. We have:

xk1 − xk2 ≥ −1⇒ v1 = 1 ⇐⇒ 2x
(b)
k1
− 1− (2x

(b)
k2
− 1) ≥ −1⇒ v

(b)
1 = 1 ⇐⇒

x
(b)
k1
− x

(b)
k2
≥ d0.5e

xk1 − xk2 < −1⇒ v1 = −1

Speeding-up the SAT Encoding

I Takes advantage of the modular structure of BNNs.

I The approach works for all properties, we exemplify for adversarial
robustness.

I The network can be encoded as a conjunction of two Boolean formulas:
Gen (generator) encodes the first block of the network, and Ver (verifier)
encodes the rest of the network:

BNNAd (x + τ, o, lx) = Gen(x + τ, y) ∧ Ver(y, z, o, lx)

where

Gen(x + τ, y) = CNF (||τ ||∞ ≤ ε) ∧
n∧

i=1

CNF (xi + τi) ∈ [LB,UB])∧

BINBLK1(x + τ, y)

Ver(y, z, o, lx) = BINBLK2(y, z) ∧ BINO(z, o) ∧ CNF (o 6= lx).

I Gen and Ver share only y use Craig interpolants to build efficient
search procedure.

Speeding-up the SAT Encoding

I Takes advantage of the modular structure of BNNs.

I The approach works for all properties, we exemplify for adversarial
robustness.

I The network can be encoded as a conjunction of two Boolean formulas:
Gen (generator) encodes the first block of the network, and Ver (verifier)
encodes the rest of the network:

BNNAd (x + τ, o, lx) = Gen(x + τ, y) ∧ Ver(y, z, o, lx)

where

Gen(x + τ, y) = CNF (||τ ||∞ ≤ ε) ∧
n∧

i=1

CNF (xi + τi) ∈ [LB,UB])∧

BINBLK1(x + τ, y)

Ver(y, z, o, lx) = BINBLK2(y, z) ∧ BINO(z, o) ∧ CNF (o 6= lx).

I Gen and Ver share only y use Craig interpolants to build efficient
search procedure.

Speeding-up the SAT Encoding

I Takes advantage of the modular structure of BNNs.

I The approach works for all properties, we exemplify for adversarial
robustness.

I The network can be encoded as a conjunction of two Boolean formulas:
Gen (generator) encodes the first block of the network, and Ver (verifier)
encodes the rest of the network:

BNNAd (x + τ, o, lx) = Gen(x + τ, y) ∧ Ver(y, z, o, lx)

where

Gen(x + τ, y) = CNF (||τ ||∞ ≤ ε) ∧
n∧

i=1

CNF (xi + τi) ∈ [LB,UB])∧

BINBLK1(x + τ, y)

Ver(y, z, o, lx) = BINBLK2(y, z) ∧ BINO(z, o) ∧ CNF (o 6= lx).

I Gen and Ver share only y use Craig interpolants to build efficient
search procedure.

Speeding-up the SAT Encoding

I Takes advantage of the modular structure of BNNs.

I The approach works for all properties, we exemplify for adversarial
robustness.

I The network can be encoded as a conjunction of two Boolean formulas:
Gen (generator) encodes the first block of the network, and Ver (verifier)
encodes the rest of the network:

BNNAd (x + τ, o, lx) = Gen(x + τ, y) ∧ Ver(y, z, o, lx)

where

Gen(x + τ, y) = CNF (||τ ||∞ ≤ ε) ∧
n∧

i=1

CNF (xi + τi) ∈ [LB,UB])∧

BINBLK1(x + τ, y)

Ver(y, z, o, lx) = BINBLK2(y, z) ∧ BINO(z, o) ∧ CNF (o 6= lx).

I Gen and Ver share only y use Craig interpolants to build efficient
search procedure.

Speeding-up the SAT Encoding (cont’d)

Definition (Craig Interpolants)

Let A and B be Boolean formulas such that the formula A ∧ B is UNSAT.
Then there exists a formula I , called interpolant, such that vars(I) =
vars(A) ∩ vars(B), B ∧ I is UNSAT and A⇒ I . In general, there exist multiple
interpolants for the given A and B.

Idea of the approach:

1. first generate a satisfying assignment to variables τ and y for Gen(x+ τ, y).
2. Let ỹ denote this assignment to y.
3. Check if the assignment y = ỹ can be extended to a satisfying assignment

for the Ver formula.
4. If yes (assign. makes Ver SAT) adversarial perturbation τ found
5. If no generate an interpolant I of Gen(x + τ, y) ∧ Ver(y = ỹ, z, o, lx) by

extracting an UNSAT core of Ver(y = ỹ, z , o, lx)
6. Use assumptions, which are assignments of ỹ, in the SAT solver to obtain

a core. Since none of the satisfying assignments to I can be extended to a
valid satisfying assignment of BNNAd (lx + τ, o, lx), we block them all in
Gen by redefining Gen := Gen ∧ ¬I .

7. Repeat from step 1. The procedure terminates since the solution space is
reduced.

8. If the formula Gen(x + τ, y) becomes UNSAT, then there is no valid
perturbation τ , i.e., the network is ε-robust on image x.

Speeding-up the SAT Encoding (cont’d)

Definition (Craig Interpolants)

Let A and B be Boolean formulas such that the formula A ∧ B is UNSAT.
Then there exists a formula I , called interpolant, such that vars(I) =
vars(A) ∩ vars(B), B ∧ I is UNSAT and A⇒ I . In general, there exist multiple
interpolants for the given A and B.

Idea of the approach:

1. first generate a satisfying assignment to variables τ and y for Gen(x+ τ, y).
2. Let ỹ denote this assignment to y.
3. Check if the assignment y = ỹ can be extended to a satisfying assignment

for the Ver formula.
4. If yes (assign. makes Ver SAT) adversarial perturbation τ found
5. If no generate an interpolant I of Gen(x + τ, y) ∧ Ver(y = ỹ, z, o, lx) by

extracting an UNSAT core of Ver(y = ỹ, z , o, lx)
6. Use assumptions, which are assignments of ỹ, in the SAT solver to obtain

a core. Since none of the satisfying assignments to I can be extended to a
valid satisfying assignment of BNNAd (lx + τ, o, lx), we block them all in
Gen by redefining Gen := Gen ∧ ¬I .

7. Repeat from step 1. The procedure terminates since the solution space is
reduced.

8. If the formula Gen(x + τ, y) becomes UNSAT, then there is no valid
perturbation τ , i.e., the network is ε-robust on image x.

Speeding-up the SAT Encoding (cont’d)

Definition (Craig Interpolants)

Let A and B be Boolean formulas such that the formula A ∧ B is UNSAT.
Then there exists a formula I , called interpolant, such that vars(I) =
vars(A) ∩ vars(B), B ∧ I is UNSAT and A⇒ I . In general, there exist multiple
interpolants for the given A and B.

Idea of the approach:

1. first generate a satisfying assignment to variables τ and y for Gen(x+ τ, y).

2. Let ỹ denote this assignment to y.
3. Check if the assignment y = ỹ can be extended to a satisfying assignment

for the Ver formula.
4. If yes (assign. makes Ver SAT) adversarial perturbation τ found
5. If no generate an interpolant I of Gen(x + τ, y) ∧ Ver(y = ỹ, z, o, lx) by

extracting an UNSAT core of Ver(y = ỹ, z , o, lx)
6. Use assumptions, which are assignments of ỹ, in the SAT solver to obtain

a core. Since none of the satisfying assignments to I can be extended to a
valid satisfying assignment of BNNAd (lx + τ, o, lx), we block them all in
Gen by redefining Gen := Gen ∧ ¬I .

7. Repeat from step 1. The procedure terminates since the solution space is
reduced.

8. If the formula Gen(x + τ, y) becomes UNSAT, then there is no valid
perturbation τ , i.e., the network is ε-robust on image x.

Speeding-up the SAT Encoding (cont’d)

Definition (Craig Interpolants)

Let A and B be Boolean formulas such that the formula A ∧ B is UNSAT.
Then there exists a formula I , called interpolant, such that vars(I) =
vars(A) ∩ vars(B), B ∧ I is UNSAT and A⇒ I . In general, there exist multiple
interpolants for the given A and B.

Idea of the approach:

1. first generate a satisfying assignment to variables τ and y for Gen(x+ τ, y).
2. Let ỹ denote this assignment to y.

3. Check if the assignment y = ỹ can be extended to a satisfying assignment
for the Ver formula.

4. If yes (assign. makes Ver SAT) adversarial perturbation τ found
5. If no generate an interpolant I of Gen(x + τ, y) ∧ Ver(y = ỹ, z, o, lx) by

extracting an UNSAT core of Ver(y = ỹ, z , o, lx)
6. Use assumptions, which are assignments of ỹ, in the SAT solver to obtain

a core. Since none of the satisfying assignments to I can be extended to a
valid satisfying assignment of BNNAd (lx + τ, o, lx), we block them all in
Gen by redefining Gen := Gen ∧ ¬I .

7. Repeat from step 1. The procedure terminates since the solution space is
reduced.

8. If the formula Gen(x + τ, y) becomes UNSAT, then there is no valid
perturbation τ , i.e., the network is ε-robust on image x.

Speeding-up the SAT Encoding (cont’d)

Definition (Craig Interpolants)

Let A and B be Boolean formulas such that the formula A ∧ B is UNSAT.
Then there exists a formula I , called interpolant, such that vars(I) =
vars(A) ∩ vars(B), B ∧ I is UNSAT and A⇒ I . In general, there exist multiple
interpolants for the given A and B.

Idea of the approach:

1. first generate a satisfying assignment to variables τ and y for Gen(x+ τ, y).
2. Let ỹ denote this assignment to y.
3. Check if the assignment y = ỹ can be extended to a satisfying assignment

for the Ver formula.

4. If yes (assign. makes Ver SAT) adversarial perturbation τ found
5. If no generate an interpolant I of Gen(x + τ, y) ∧ Ver(y = ỹ, z, o, lx) by

extracting an UNSAT core of Ver(y = ỹ, z , o, lx)
6. Use assumptions, which are assignments of ỹ, in the SAT solver to obtain

a core. Since none of the satisfying assignments to I can be extended to a
valid satisfying assignment of BNNAd (lx + τ, o, lx), we block them all in
Gen by redefining Gen := Gen ∧ ¬I .

7. Repeat from step 1. The procedure terminates since the solution space is
reduced.

8. If the formula Gen(x + τ, y) becomes UNSAT, then there is no valid
perturbation τ , i.e., the network is ε-robust on image x.

Speeding-up the SAT Encoding (cont’d)

Definition (Craig Interpolants)

Let A and B be Boolean formulas such that the formula A ∧ B is UNSAT.
Then there exists a formula I , called interpolant, such that vars(I) =
vars(A) ∩ vars(B), B ∧ I is UNSAT and A⇒ I . In general, there exist multiple
interpolants for the given A and B.

Idea of the approach:

1. first generate a satisfying assignment to variables τ and y for Gen(x+ τ, y).
2. Let ỹ denote this assignment to y.
3. Check if the assignment y = ỹ can be extended to a satisfying assignment

for the Ver formula.
4. If yes (assign. makes Ver SAT) adversarial perturbation τ found

5. If no generate an interpolant I of Gen(x + τ, y) ∧ Ver(y = ỹ, z, o, lx) by
extracting an UNSAT core of Ver(y = ỹ, z , o, lx)

6. Use assumptions, which are assignments of ỹ, in the SAT solver to obtain
a core. Since none of the satisfying assignments to I can be extended to a
valid satisfying assignment of BNNAd (lx + τ, o, lx), we block them all in
Gen by redefining Gen := Gen ∧ ¬I .

7. Repeat from step 1. The procedure terminates since the solution space is
reduced.

8. If the formula Gen(x + τ, y) becomes UNSAT, then there is no valid
perturbation τ , i.e., the network is ε-robust on image x.

Speeding-up the SAT Encoding (cont’d)

Definition (Craig Interpolants)

Let A and B be Boolean formulas such that the formula A ∧ B is UNSAT.
Then there exists a formula I , called interpolant, such that vars(I) =
vars(A) ∩ vars(B), B ∧ I is UNSAT and A⇒ I . In general, there exist multiple
interpolants for the given A and B.

Idea of the approach:

1. first generate a satisfying assignment to variables τ and y for Gen(x+ τ, y).
2. Let ỹ denote this assignment to y.
3. Check if the assignment y = ỹ can be extended to a satisfying assignment

for the Ver formula.
4. If yes (assign. makes Ver SAT) adversarial perturbation τ found
5. If no generate an interpolant I of Gen(x + τ, y) ∧ Ver(y = ỹ, z, o, lx) by

extracting an UNSAT core of Ver(y = ỹ, z , o, lx)

6. Use assumptions, which are assignments of ỹ, in the SAT solver to obtain
a core. Since none of the satisfying assignments to I can be extended to a
valid satisfying assignment of BNNAd (lx + τ, o, lx), we block them all in
Gen by redefining Gen := Gen ∧ ¬I .

7. Repeat from step 1. The procedure terminates since the solution space is
reduced.

8. If the formula Gen(x + τ, y) becomes UNSAT, then there is no valid
perturbation τ , i.e., the network is ε-robust on image x.

Speeding-up the SAT Encoding (cont’d)

Definition (Craig Interpolants)

Let A and B be Boolean formulas such that the formula A ∧ B is UNSAT.
Then there exists a formula I , called interpolant, such that vars(I) =
vars(A) ∩ vars(B), B ∧ I is UNSAT and A⇒ I . In general, there exist multiple
interpolants for the given A and B.

Idea of the approach:

1. first generate a satisfying assignment to variables τ and y for Gen(x+ τ, y).
2. Let ỹ denote this assignment to y.
3. Check if the assignment y = ỹ can be extended to a satisfying assignment

for the Ver formula.
4. If yes (assign. makes Ver SAT) adversarial perturbation τ found
5. If no generate an interpolant I of Gen(x + τ, y) ∧ Ver(y = ỹ, z, o, lx) by

extracting an UNSAT core of Ver(y = ỹ, z , o, lx)
6. Use assumptions, which are assignments of ỹ, in the SAT solver to obtain

a core. Since none of the satisfying assignments to I can be extended to a
valid satisfying assignment of BNNAd (lx + τ, o, lx), we block them all in
Gen by redefining Gen := Gen ∧ ¬I .

7. Repeat from step 1. The procedure terminates since the solution space is
reduced.

8. If the formula Gen(x + τ, y) becomes UNSAT, then there is no valid
perturbation τ , i.e., the network is ε-robust on image x.

Speeding-up the SAT Encoding (cont’d)

Definition (Craig Interpolants)

Let A and B be Boolean formulas such that the formula A ∧ B is UNSAT.
Then there exists a formula I , called interpolant, such that vars(I) =
vars(A) ∩ vars(B), B ∧ I is UNSAT and A⇒ I . In general, there exist multiple
interpolants for the given A and B.

Idea of the approach:

1. first generate a satisfying assignment to variables τ and y for Gen(x+ τ, y).
2. Let ỹ denote this assignment to y.
3. Check if the assignment y = ỹ can be extended to a satisfying assignment

for the Ver formula.
4. If yes (assign. makes Ver SAT) adversarial perturbation τ found
5. If no generate an interpolant I of Gen(x + τ, y) ∧ Ver(y = ỹ, z, o, lx) by

extracting an UNSAT core of Ver(y = ỹ, z , o, lx)
6. Use assumptions, which are assignments of ỹ, in the SAT solver to obtain

a core. Since none of the satisfying assignments to I can be extended to a
valid satisfying assignment of BNNAd (lx + τ, o, lx), we block them all in
Gen by redefining Gen := Gen ∧ ¬I .

7. Repeat from step 1. The procedure terminates since the solution space is
reduced.

8. If the formula Gen(x + τ, y) becomes UNSAT, then there is no valid
perturbation τ , i.e., the network is ε-robust on image x.

Speeding-up the SAT Encoding (cont’d)

Definition (Craig Interpolants)

Let A and B be Boolean formulas such that the formula A ∧ B is UNSAT.
Then there exists a formula I , called interpolant, such that vars(I) =
vars(A) ∩ vars(B), B ∧ I is UNSAT and A⇒ I . In general, there exist multiple
interpolants for the given A and B.

Idea of the approach:

1. first generate a satisfying assignment to variables τ and y for Gen(x+ τ, y).
2. Let ỹ denote this assignment to y.
3. Check if the assignment y = ỹ can be extended to a satisfying assignment

for the Ver formula.
4. If yes (assign. makes Ver SAT) adversarial perturbation τ found
5. If no generate an interpolant I of Gen(x + τ, y) ∧ Ver(y = ỹ, z, o, lx) by

extracting an UNSAT core of Ver(y = ỹ, z , o, lx)
6. Use assumptions, which are assignments of ỹ, in the SAT solver to obtain

a core. Since none of the satisfying assignments to I can be extended to a
valid satisfying assignment of BNNAd (lx + τ, o, lx), we block them all in
Gen by redefining Gen := Gen ∧ ¬I .

7. Repeat from step 1. The procedure terminates since the solution space is
reduced.

8. If the formula Gen(x + τ, y) becomes UNSAT, then there is no valid
perturbation τ , i.e., the network is ε-robust on image x.

Contents

Motivation

Preliminaries
Properties of neural networks
Binarized Neural Networks (BNNs)

Papers [8, 9]
Encoding the BNNs

Mixed Integer Linear Program (MILP) Encoding
Integer Linear Programming (ILP) Encoding

SAT Encoding
Encoding the Properties

Paper [1]

Paper [6]

Paper [4]

Other approaches [7]

Encoding the Properties

1. Adversarial Constraint:
BNNAd (x + τ, o, lx) = CNF (||τ ||∞ ≤ ε) ∨

∧n
i=1 CNF ((xi + τi) ∈ [L,U])∧

BNN(x + τ, o) ∧ CNF (o 6= lx)

2. Verifying Universal Adversarial Robustness

|S|∧
i=1

BNNAd (xi + τ, oi , lxi) ⇐⇒ qj ∧ CNF

 |S|∑
i=1

qj ≥ ρ|S |


3. Verifying Network Equivalence: if

n∧
i=1

CNF (xi ∈ [L,U]) ∧ BNN1(x, o1) ∧ BNN2(x, o2) ∧ o1 6= o2

is UNSAT then the networks are equivalent. If SAT then we obtain a
witness image x.

Experimental Results

I Torch framework; Tital Pascal X GPU

I Datasets: MNIST, MNIST-rot (MINIST where the digits were rotated
uniformly in [0, 2π] radians), MNIST-back-image (MINIST with a patch
from a black-and-white image was used as the background for the digit
image)

I focus on adversarial robustness
I Architecture

I 4 internal blocks with each block containing a linear layer (LIN) and a final
output block.

I LIN layer in the first block contains 200 neurons, the LIN layers in other
blocks contain 100 neurons

I BN and BIN layers in each block were used; additionally a hard tanh layer in
each internal block was used only during training

I For inputs processing, two layers (BN and BIN) were added to the BNN, as
the first 2 layers in the network to perform binarization of the grayscale
inputs (+) network architecture simplification and search space
reduction; (-) lower accuracy of the original BNN by approx.1 %

I Accuracy of the resulting network on the MNIST, MNISTrot, and
MNIST-back-image datasets were 95.7%, 71%, resp. 70%

Experimental Results (cont’d)

Checking adversarial robustness:

I from each dataset randomly picked 20 images correctly classified by the
network for each of the 10 classes (coresponding to digits) 200 images

I for search space reduction, focus on important pixels as defined by saliency
map: perturb the top 50% of highly salient pixels in an image; if a valid
perturbation that leads to misclassification among this set of pixels can
not be found then search again over all pixels of the image.

I experimented with 3 different maximum perturbation values ε ∈ {1, 3, 5}
I timeout: 300 seconds for each instance

I compare three methods of searching for adversarial perturbations. (1) ILP
method with SCIP solver, (2) pure SAT method for the sequential
counters method using Glucose SAT solver, (3) the SAT menthod from
(2) augumented with the counter-example-guided.

I complexity of the SAT formulae: 1.4 million variables and 5 million
clauses: MNIST-rot – approx 7 million clauses; MNIST and MNIST-back
– approx 5 and 3 million clauses on average, respectively.

I the largest instance contains: 3 million variables and 12 million clauses.

Experimental Results (cont’d)

I Advantages of the method: complete search procedure certify
ε-robustness there exists no adversarial perturbation technique that can
fool the network on these images.

I existing methods: incomplete
I with increasing ε, the number of images on which the network is ε-robust

decreases as the adversary can leverage the larger value to construct
adversarial images.

I complete search procedure because typically perturbed images can not be
detected with the human eye.

Contents

Motivation

Preliminaries
Properties of neural networks
Binarized Neural Networks (BNNs)

Papers [8, 9]
Encoding the BNNs

Mixed Integer Linear Program (MILP) Encoding
Integer Linear Programming (ILP) Encoding

SAT Encoding
Encoding the Properties

Paper [1]

Paper [6]

Paper [4]

Other approaches [7]

Summary of paper [1]

I [1] uses both binary and non-binary parameters

I In fact, ablation study pursued by Andreea Postovan on traffic signs
dataset shows that we need a layer with real values otherwise we loose too
much information (low accuracy); also linear layer is not sufficient, we
need convolutional neural networks (CNNs).

I For MNIST dataset pure binarized network could be sufficient because the
features to be detected are not complex.

I For Fashion dataset they used XNOR-net (binary and non-binary layers).

I The approach is based on Reluplex [5] (verification of DNNs) whose
calculus was extended to handle sign function.

I Paper shows that the extension with sign function is sufficient to verify
BNNs.

I Reluplex = ReLU + Simplex

I ReLU(x) = max(0,x) which translated to constraints gives a lot of
disjunctions infeasible to be solve using brute force various
improvements.

I Paper has a public repository available and even the machine learning
models were not available, the information from the repo+paper+email
exchange with authors was sufficient in order to reproduce the ML models
from the paper.

Summary of paper [1]

I [1] uses both binary and non-binary parameters

I In fact, ablation study pursued by Andreea Postovan on traffic signs
dataset shows that we need a layer with real values otherwise we loose too
much information (low accuracy); also linear layer is not sufficient, we
need convolutional neural networks (CNNs).

I For MNIST dataset pure binarized network could be sufficient because the
features to be detected are not complex.

I For Fashion dataset they used XNOR-net (binary and non-binary layers).

I The approach is based on Reluplex [5] (verification of DNNs) whose
calculus was extended to handle sign function.

I Paper shows that the extension with sign function is sufficient to verify
BNNs.

I Reluplex = ReLU + Simplex

I ReLU(x) = max(0,x) which translated to constraints gives a lot of
disjunctions infeasible to be solve using brute force various
improvements.

I Paper has a public repository available and even the machine learning
models were not available, the information from the repo+paper+email
exchange with authors was sufficient in order to reproduce the ML models
from the paper.

Summary of paper [1]

I [1] uses both binary and non-binary parameters

I In fact, ablation study pursued by Andreea Postovan on traffic signs
dataset shows that we need a layer with real values otherwise we loose too
much information (low accuracy); also linear layer is not sufficient, we
need convolutional neural networks (CNNs).

I For MNIST dataset pure binarized network could be sufficient because the
features to be detected are not complex.

I For Fashion dataset they used XNOR-net (binary and non-binary layers).

I The approach is based on Reluplex [5] (verification of DNNs) whose
calculus was extended to handle sign function.

I Paper shows that the extension with sign function is sufficient to verify
BNNs.

I Reluplex = ReLU + Simplex

I ReLU(x) = max(0,x) which translated to constraints gives a lot of
disjunctions infeasible to be solve using brute force various
improvements.

I Paper has a public repository available and even the machine learning
models were not available, the information from the repo+paper+email
exchange with authors was sufficient in order to reproduce the ML models
from the paper.

Summary of paper [1]

I [1] uses both binary and non-binary parameters

I In fact, ablation study pursued by Andreea Postovan on traffic signs
dataset shows that we need a layer with real values otherwise we loose too
much information (low accuracy); also linear layer is not sufficient, we
need convolutional neural networks (CNNs).

I For MNIST dataset pure binarized network could be sufficient because the
features to be detected are not complex.

I For Fashion dataset they used XNOR-net (binary and non-binary layers).

I The approach is based on Reluplex [5] (verification of DNNs) whose
calculus was extended to handle sign function.

I Paper shows that the extension with sign function is sufficient to verify
BNNs.

I Reluplex = ReLU + Simplex

I ReLU(x) = max(0,x) which translated to constraints gives a lot of
disjunctions infeasible to be solve using brute force various
improvements.

I Paper has a public repository available and even the machine learning
models were not available, the information from the repo+paper+email
exchange with authors was sufficient in order to reproduce the ML models
from the paper.

Summary of paper [1]

I [1] uses both binary and non-binary parameters

I In fact, ablation study pursued by Andreea Postovan on traffic signs
dataset shows that we need a layer with real values otherwise we loose too
much information (low accuracy); also linear layer is not sufficient, we
need convolutional neural networks (CNNs).

I For MNIST dataset pure binarized network could be sufficient because the
features to be detected are not complex.

I For Fashion dataset they used XNOR-net (binary and non-binary layers).

I The approach is based on Reluplex [5] (verification of DNNs) whose
calculus was extended to handle sign function.

I Paper shows that the extension with sign function is sufficient to verify
BNNs.

I Reluplex = ReLU + Simplex

I ReLU(x) = max(0,x) which translated to constraints gives a lot of
disjunctions infeasible to be solve using brute force various
improvements.

I Paper has a public repository available and even the machine learning
models were not available, the information from the repo+paper+email
exchange with authors was sufficient in order to reproduce the ML models
from the paper.

Summary of paper [1]

I [1] uses both binary and non-binary parameters

I In fact, ablation study pursued by Andreea Postovan on traffic signs
dataset shows that we need a layer with real values otherwise we loose too
much information (low accuracy); also linear layer is not sufficient, we
need convolutional neural networks (CNNs).

I For MNIST dataset pure binarized network could be sufficient because the
features to be detected are not complex.

I For Fashion dataset they used XNOR-net (binary and non-binary layers).

I The approach is based on Reluplex [5] (verification of DNNs) whose
calculus was extended to handle sign function.

I Paper shows that the extension with sign function is sufficient to verify
BNNs.

I Reluplex = ReLU + Simplex

I ReLU(x) = max(0,x) which translated to constraints gives a lot of
disjunctions infeasible to be solve using brute force various
improvements.

I Paper has a public repository available and even the machine learning
models were not available, the information from the repo+paper+email
exchange with authors was sufficient in order to reproduce the ML models
from the paper.

Summary of paper [1]

I [1] uses both binary and non-binary parameters

I In fact, ablation study pursued by Andreea Postovan on traffic signs
dataset shows that we need a layer with real values otherwise we loose too
much information (low accuracy); also linear layer is not sufficient, we
need convolutional neural networks (CNNs).

I For MNIST dataset pure binarized network could be sufficient because the
features to be detected are not complex.

I For Fashion dataset they used XNOR-net (binary and non-binary layers).

I The approach is based on Reluplex [5] (verification of DNNs) whose
calculus was extended to handle sign function.

I Paper shows that the extension with sign function is sufficient to verify
BNNs.

I Reluplex = ReLU + Simplex

I ReLU(x) = max(0,x) which translated to constraints gives a lot of
disjunctions infeasible to be solve using brute force various
improvements.

I Paper has a public repository available and even the machine learning
models were not available, the information from the repo+paper+email
exchange with authors was sufficient in order to reproduce the ML models
from the paper.

Summary of paper [1]

I [1] uses both binary and non-binary parameters

I In fact, ablation study pursued by Andreea Postovan on traffic signs
dataset shows that we need a layer with real values otherwise we loose too
much information (low accuracy); also linear layer is not sufficient, we
need convolutional neural networks (CNNs).

I For MNIST dataset pure binarized network could be sufficient because the
features to be detected are not complex.

I For Fashion dataset they used XNOR-net (binary and non-binary layers).

I The approach is based on Reluplex [5] (verification of DNNs) whose
calculus was extended to handle sign function.

I Paper shows that the extension with sign function is sufficient to verify
BNNs.

I Reluplex = ReLU + Simplex

I ReLU(x) = max(0,x) which translated to constraints gives a lot of
disjunctions infeasible to be solve using brute force various
improvements.

I Paper has a public repository available and even the machine learning
models were not available, the information from the repo+paper+email
exchange with authors was sufficient in order to reproduce the ML models
from the paper.

Contents

Motivation

Preliminaries
Properties of neural networks
Binarized Neural Networks (BNNs)

Papers [8, 9]
Encoding the BNNs

Mixed Integer Linear Program (MILP) Encoding
Integer Linear Programming (ILP) Encoding

SAT Encoding
Encoding the Properties

Paper [1]

Paper [6]

Paper [4]

Other approaches [7]

Summary of paper [6]

The paper allows verification of networks with both binary and non-binary
weights and activations (i.e. output of the activation functions).

The paper presents a set of rules from transforming a network with different
layers into logical formulae (linear, batch normalization, sign) – similar to [8, 9].

The paper compares verification tasks, like robustness, for BNNs, resp. DNNs,
models trained for MINIS and ACAS controler datasets.

The paper has a similar approach as [8, 9] (translation of the network into
formulae) but the underlying problem is similar to [1] (binary and non-binary
parameters); the authors are co-authors of papers on Reluplex and Marabou.

My impression is that this paper just tested [8, 9] approach to compare with [1].

Summary of paper [6]

The paper allows verification of networks with both binary and non-binary
weights and activations (i.e. output of the activation functions).

The paper presents a set of rules from transforming a network with different
layers into logical formulae (linear, batch normalization, sign) – similar to [8, 9].

The paper compares verification tasks, like robustness, for BNNs, resp. DNNs,
models trained for MINIS and ACAS controler datasets.

The paper has a similar approach as [8, 9] (translation of the network into
formulae) but the underlying problem is similar to [1] (binary and non-binary
parameters); the authors are co-authors of papers on Reluplex and Marabou.

My impression is that this paper just tested [8, 9] approach to compare with [1].

Summary of paper [6]

The paper allows verification of networks with both binary and non-binary
weights and activations (i.e. output of the activation functions).

The paper presents a set of rules from transforming a network with different
layers into logical formulae (linear, batch normalization, sign) – similar to [8, 9].

The paper compares verification tasks, like robustness, for BNNs, resp. DNNs,
models trained for MINIS and ACAS controler datasets.

The paper has a similar approach as [8, 9] (translation of the network into
formulae) but the underlying problem is similar to [1] (binary and non-binary
parameters); the authors are co-authors of papers on Reluplex and Marabou.

My impression is that this paper just tested [8, 9] approach to compare with [1].

Summary of paper [6]

The paper allows verification of networks with both binary and non-binary
weights and activations (i.e. output of the activation functions).

The paper presents a set of rules from transforming a network with different
layers into logical formulae (linear, batch normalization, sign) – similar to [8, 9].

The paper compares verification tasks, like robustness, for BNNs, resp. DNNs,
models trained for MINIS and ACAS controler datasets.

The paper has a similar approach as [8, 9] (translation of the network into
formulae) but the underlying problem is similar to [1] (binary and non-binary
parameters); the authors are co-authors of papers on Reluplex and Marabou.

My impression is that this paper just tested [8, 9] approach to compare with [1].

Summary of paper [6]

The paper allows verification of networks with both binary and non-binary
weights and activations (i.e. output of the activation functions).

The paper presents a set of rules from transforming a network with different
layers into logical formulae (linear, batch normalization, sign) – similar to [8, 9].

The paper compares verification tasks, like robustness, for BNNs, resp. DNNs,
models trained for MINIS and ACAS controler datasets.

The paper has a similar approach as [8, 9] (translation of the network into
formulae) but the underlying problem is similar to [1] (binary and non-binary
parameters); the authors are co-authors of papers on Reluplex and Marabou.

My impression is that this paper just tested [8, 9] approach to compare with [1].

Contents

Motivation

Preliminaries
Properties of neural networks
Binarized Neural Networks (BNNs)

Papers [8, 9]
Encoding the BNNs

Mixed Integer Linear Program (MILP) Encoding
Integer Linear Programming (ILP) Encoding

SAT Encoding
Encoding the Properties

Paper [1]

Paper [6]

Paper [4]

Other approaches [7]

Summary of paper [4]

Efficient Exact Verification (EEV) tool:

I a novel SAT solver that speeds up BNN verification by natively handling
the reified cardinality constraints arising in BNN encodings;

I strategies to train solver-friendly robust BNNs by inducing balanced
layer-wise sparsity* and low cardinality bounds, and adaptively cancelling
the gradients.

Contributions of the paper:

I first exact verification results for l∞-bounded adversarial robustness of
nontrivial convolutional BNNs on the MNIST and CIFAR10 datasets.

* Maybe weights prunning can handle this issue already during training?

Summary of paper [4]

Efficient Exact Verification (EEV) tool:

I a novel SAT solver that speeds up BNN verification by natively handling
the reified cardinality constraints arising in BNN encodings;

I strategies to train solver-friendly robust BNNs by inducing balanced
layer-wise sparsity* and low cardinality bounds, and adaptively cancelling
the gradients.

Contributions of the paper:

I first exact verification results for l∞-bounded adversarial robustness of
nontrivial convolutional BNNs on the MNIST and CIFAR10 datasets.

* Maybe weights prunning can handle this issue already during training?

Summary of paper [4]

Efficient Exact Verification (EEV) tool:

I a novel SAT solver that speeds up BNN verification by natively handling
the reified cardinality constraints arising in BNN encodings;

I strategies to train solver-friendly robust BNNs by inducing balanced
layer-wise sparsity* and low cardinality bounds, and adaptively cancelling
the gradients.

Contributions of the paper:

I first exact verification results for l∞-bounded adversarial robustness of
nontrivial convolutional BNNs on the MNIST and CIFAR10 datasets.

* Maybe weights prunning can handle this issue already during training?

Summary of paper [4]

Efficient Exact Verification (EEV) tool:

I a novel SAT solver that speeds up BNN verification by natively handling
the reified cardinality constraints arising in BNN encodings;

I strategies to train solver-friendly robust BNNs by inducing balanced
layer-wise sparsity* and low cardinality bounds, and adaptively cancelling
the gradients.

Contributions of the paper:

I first exact verification results for l∞-bounded adversarial robustness of
nontrivial convolutional BNNs on the MNIST and CIFAR10 datasets.

* Maybe weights prunning can handle this issue already during training?

Summary of paper [4]

Efficient Exact Verification (EEV) tool:

I a novel SAT solver that speeds up BNN verification by natively handling
the reified cardinality constraints arising in BNN encodings;

I strategies to train solver-friendly robust BNNs by inducing balanced
layer-wise sparsity* and low cardinality bounds, and adaptively cancelling
the gradients.

Contributions of the paper:

I first exact verification results for l∞-bounded adversarial robustness of
nontrivial convolutional BNNs on the MNIST and CIFAR10 datasets.

* Maybe weights prunning can handle this issue already during training?

Contents

Motivation

Preliminaries
Properties of neural networks
Binarized Neural Networks (BNNs)

Papers [8, 9]
Encoding the BNNs

Mixed Integer Linear Program (MILP) Encoding
Integer Linear Programming (ILP) Encoding

SAT Encoding
Encoding the Properties

Paper [1]

Paper [6]

Paper [4]

Other approaches [7]

Summary of paper [7]

Uses formal techniques during BNN training to ensure robustness:

I quantization-aware interval bound propagation (QA-IBP) method for
training robust quantized neural networks (QNNs)

I complete verification procedure for verifying the adversarial robustness of
QNNs

I the verification procedure has the advantage that it runs entirely on GPU
or other accelerator devices.

Summary of paper [7]

Uses formal techniques during BNN training to ensure robustness:

I quantization-aware interval bound propagation (QA-IBP) method for
training robust quantized neural networks (QNNs)

I complete verification procedure for verifying the adversarial robustness of
QNNs

I the verification procedure has the advantage that it runs entirely on GPU
or other accelerator devices.

Summary of paper [7]

Uses formal techniques during BNN training to ensure robustness:

I quantization-aware interval bound propagation (QA-IBP) method for
training robust quantized neural networks (QNNs)

I complete verification procedure for verifying the adversarial robustness of
QNNs

I the verification procedure has the advantage that it runs entirely on GPU
or other accelerator devices.

Summary of paper [7]

Uses formal techniques during BNN training to ensure robustness:

I quantization-aware interval bound propagation (QA-IBP) method for
training robust quantized neural networks (QNNs)

I complete verification procedure for verifying the adversarial robustness of
QNNs

I the verification procedure has the advantage that it runs entirely on GPU
or other accelerator devices.

Conclusions

I Papers [1, 8, 9] provide complete algorithms, i.e. if a property is true then
it is identified as such.

I Papers [8, 9] formalize the BNN from scratch (no public repository).

I Techniques from paper [1] are implemented in Reluplex which is an
extension of Marabou
(https://github.com/NeuralNetworkVerification/Marabou) - code
available and up to date.

https://github.com/NeuralNetworkVerification/Marabou

References I

[1] Guy Amir, Haoze Wu, Clark Barrett, and Guy Katz. An smt-based
approach for verifying binarized neural networks. In International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 203–222. Springer, 2021.

[2] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neural
networks with weights and activations constrained to +1 or -1. CoRR,
abs/1602.02830, 2016.

[3] Thomas A. Henzinger, Mathias Lechner, and Dorde Zikelic. Scalable
verification of quantized neural networks (technical report). CoRR,
abs/2012.08185, 2020.

[4] Kai Jia and Martin Rinard. Efficient exact verification of binarized neural
networks. Advances in neural information processing systems,
33:1782–1795, 2020.

[5] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J
Kochenderfer. Reluplex: a calculus for reasoning about deep neural
networks. Formal Methods in System Design, pages 1–30, 2021.

[6] Christopher Lazarus and Mykel J. Kochenderfer. A mixed integer
programming approach for verifying properties of binarized neural networks.
2022.

References II

[7] Mathias Lechner, Dorde Žikelić, Krishnendu Chatterjee, Thomas A.
Henzinger, and Daniela Rus. Quantization-aware interval bound
propagation for training certifiably robust quantized neural networks, 2022.

[8] Nina Narodytska. Formal analysis of deep binarized neural networks. In
IJCAI, pages 5692–5696, 2018.

[9] Nina Narodytska, Shiva Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and
Toby Walsh. Verifying properties of binarized deep neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

	Motivation
	Preliminaries
	Properties of neural networks
	Binarized Neural Networks (BNNs)

	Papers narodytska2018formal,narodytska2018verifying
	Encoding the BNNs
	SAT Encoding
	Encoding the Properties

	Paper amir2021smt
	Paper https://doi.org/10.48550/arxiv.2203.07078
	Paper jia2020efficient
	Other approaches https://doi.org/10.48550/arxiv.2211.16187
	References

