
Static Program Analysis using
Symbolic Computation
Mădălina Eraşcu
merascu@risc.jku.at

Abstract. The task of ensuring cor-

rectness of computer programs is es-

pecially important in the case of pro-

grams that run on safety-critical sys-

tems, because the lack of it might

lead to huge life and financial losses.

We approach the program correctness

problem using static program analysis

combined with computational logic, com-

puter algebra, and algorithmic combi-

natorics methods.

Illustrating Example

We consider the example computing the greatest

common divisor of two positive integers a and b.

This program is correct with respect to its spec-

ification, composed by the precondition Pre[a, b]

and postcondition Post[a, b, β], if the output of the

algorithm is correct (partial correctness) and it ter-

minates. Using a program calculus based on for-

ward symbolic execution and functional seman-

tics, we transform the program in first order logic

formulae called verification conditions. In this way,

the problem of checking the correctness of the

program reduces to a satisfiability proof of the

verification conditions. In a first phase, compu-

tational logic methods are used to approach the

proof of the verification conditions, and if the proof

does not succeed then advanced computer alge-

bra algorithms (for partial correctness) and algo-

rithmic combinatoric techniques (for termination)

will be further applied.

Particularities of our Approach

We aim at the identification of the minimal logi-

cal apparatus necessary for formulating and prov-

ing (in a computer assisted manner) a correct

collection of methods for proving a program cal-

culus. Moreover the interplay between compu-

tational logic, computer algebra, and algorithmic

combinatorics for proving program correctness

was not so much exploited in the program veri-

fication community.

The task of performing program proofs is a

very difficult one; one must rely on powerful

provers and existing knowledge.

Our method for proving the correctness of the

program calculus is based only on the underlying

theory on which the program operates, on the nat-

ural numbers theory, and on first order logic infer-

ences. This small number of ingredients makes

the automatic proofs simpler and natural, and it

is mainly due to the termination condition, an in-

duction principle developed from the structure of

the program with respect to iterative structures

(recursive calls and while loops). This termina-

tion condition ensures the logical existence of the

function implemented by the iterative structure.

The existence is not automatic, because an iter-

ative structure corresponds from the logical point

of view to an implicit definition. Moreover, the ter-

mination condition can be also used for proving

the uniqueness of the function as well as the total

correctness of the iterative structure.

Problem Specification Challenges

1 Complexity of the algebraic algorithms. The algebraic algorithms can

be applied to large classes of verification conditions, but their drawback

are the high complexity bounds. They have to be adapted to our specific

problems and used in combination with logical and other ,,cheap methods”

methods.

2 Quantifiers. Finding models of satisfiability for formulae containing quan-

tifiers (∃, ∀) is hard even for decidable theories (e.g. linear arithmetic over

integers – the partial correctness verification condition in our example be-

longs to this theory, reals, datatypes).

3 Undecidability of the program termination. Due to this result there

will always be a non-terminating program whose non-termination can not

be proven. Therefore we will restrict our analysis to specific classes of

programs where logical, algebraic, and combinatorial methods can be used

in order to confirm/infirm termination.

Example

in a, b: integers where

Pre[a,b]
︷ ︸︸ ︷

a ≥ 0, b ≥ 0

out β: integer where

∃
k1,k2

(a = k1 ∗ β) ∧ (b = k2 ∗ β)∧

∀
g

∃
l1,l2

(a = l1 ∗ g) ∧ (b = l2 ∗ g) ⇒ β ≥ g







Post[a, b, β]

if (a = 0)

return[b]

if (b 6= 0)

if (a > b)

a := GCD[a − b, b],

a := GCD[a, b − a]

return[a]

Sample Verification Conditions

1 Partial Correctness

Pre[a, b] ∧ a 6= 0 ∧ b 6= 0 ∧ a > b ∧ a ≥ b ∧ Pre[a − b, b] ∧ Post[a − b, b, β] ⇒ Post[a, b, β]

2 Termination

(

∀
a,b

Pre[a,b]

∧







a = 0 ⇒ π[a, b]

b = 0 ⇒ π[a, b]

(a 6= 0 ∧ b 6= 0 ∧ a > b ∧ π[a − b, b]) ⇒ π[a, b]

(a 6= 0 ∧ b 6= 0 ∧ a 6> b ∧ π[a, b − a]) ⇒ π[a, b]

)

=⇒
(

∀
a,b

Pre[a,b]

π[a, b]
)

Current Achievements

• Automated proof of correctness of the pro-

gram calculus in case of single recursion pro-

grams and arbitrarily nested, possibly abrupt

terminating while loops, in the TH∃OREM∀

mathematical assistant.

• Prototype implementation of a verification en-

vironment consisting in a verification condi-

tions generator and a satisfiability checker for

them.

Recipient of a DOC-fFORTE-fellowship of the Austrian Academy of Sciences at

Research Institute for Symbolic Computation

Johannes Kepler Universität Linz . Altenberger Straße 69 . A-4040 Linz . Austria


